

OXFORD SOURCE APPORTIONMENT STUDY

Report for: Oxford City Council

Ricardo ref. ED20604103

Customer: Oxford City Council

Confidentiality, copyright and reproduction:

This report is the Copyright of Oxford City Council and has been prepared by Ricardo, a trading name of Ricardo-AEA Ltd under contract to Oxford City Council. The contents of this report may not be reproduced, in whole or in part, nor passed to any organisation or person without the specific prior written permission of Oxford City Council. Ricardo accepts no liability whatsoever to any third party for any loss or damage arising from any interpretation or use of the information contained in this report, or reliance on any views expressed therein, other than the liability that is agreed in the said contract.

Ricardo reference:

ED20604103

Contact:

Thomas Adams, Gemini Building, Fermi Avenue, Harwell, Didcot, OX11 0QR, UK

T: +44 (0) 1235 753 517 E: <u>Thomas.Adams@ricardo.com</u>

Author:

Thomas Adams, Abigail Pepler, Jekabs Jursins, Anton Girard-Sequeira, Ella Wingard

Approved by: Guy Hitchcock

Date: 05/02/2025

Ricardo is certified to ISO9001, ISO14001, ISO27001 and ISO45001.

Ricardo, its affiliates and subsidiaries and their respective officers, employees or agents are, individually and collectively, referred to as the 'Ricardo Group'. The Ricardo Group assumes no responsibility and shall not be liable to any person for any loss, damage or expense caused by reliance on the information or advice in this document or howsoever provided, unless that person has signed a contract with the relevant Ricardo Group entity for the provision of this information or advice and in that case any responsibility or liability is exclusively on the terms and conditions set out in that contract.

CONTENTS

1.	INTRODUCTION	3
2.	METHOD STATEMENT	5
	2.1 AIR DISPERSION MODELLING METHODOLOGY	5
	2.2 MODEL VALIDATION	6
	2.3 ZEBRA MODEL	7
3.	LOCATIONS FOR SOURCE APPORTIONMENT	8
	3.1 ST CLEMENTS/ THE PLAIN	9
	3.2 GEORGE STREET / PARK END STREET / WORCESTER STREET	11
	3.3 BOTLEY ROAD	11
	3.4 ADDITIONAL AREAS NOT TAKEN FORWARD FOR SOURCE APPORTIONMENT	12
	3.4.1 Areas of elevated concentrations which are not representative of human exposure	12
	3.4.2 Other areas	13
4.	SOURCE APPORTIONMENT OF MODELLED ROAD TRANSPORT EMISSIONS	15
	4.1 ST CLEMENT'S / THE PLAIN	16
	4.2 WORCESTER STREET	21
	4.3 BOTLEY ROAD	25
	4.4 COMPARISON TO 2022 BASELINE	29
	4.5 COMPARISON WITH THE 2020 STUDY	31
5.	SOURCE APPORTIONMENT OF NAEI EMISSIONS	35
	5.1 OXFORD ADMINISTRATIVE AREA	38
	5.2 OXFORD INNER CITY	40
6.	REQUIRED REDUCTION IN EMISSIONS	43
	6.1 REQUIRED REDUCTIONS USING 2022 MONITORING DATA	43
	6.2 REQUIRED REDUCTIONS USING 2023 MONITORING DATA	44
	CONCLUSIONS	45
	PPENDIX 1. AIR DISPERSION MODEL VERIFICATION AND ADJUSTMENT	47
	PPENDIX 2. TAXI EMISSIONS BY FUEL TYPE	51
	PPENDIX 3. BACKGROUND MAPS SOURCE APPORTIONMENT	54
AF	PPENDIX 4. SOURCE APPORTIONMENT OF BASELINE ROAD TRANSPORT EMISSIONS	57
	ST CLEMENTS/ THE PLAIN	57
	WORCESTER STREET	61
	BOTLEY ROAD	62
AF	PPENDIX 5 NAEI EMISISONS SOURCE APPORTIONMENT IN FULL (PM10 AND PM2.5)	65

Abbreviations

Abbreviation	Explanation
AADT	Annual Average Daily Traffic
AERMOD	American Meteorological Society/Environmental Protection Agency Regulatory MODel
AQAP	Air Quality Action Plan
AQMA	Air Quality Management Area
AQO	Air Quality Objective
AQS	Air Quality Strategy
ASR	Annual Status Report
AURN	Automatic Urban and Rural Network
BEIS	(UK Department for) Business, Energy & Industrial Strategy
CAZ	Clean Air Zone
COPERT	COmputer Programme to calculate Emissions from Road Transport
DT	Diffusion Tube
EEA	European Environment Agency
EFT	Emissions Factor Toolkit
EMEP	European Monitoring and Evaluation Programme
GIS	Geographic Information System
HCV	Hackney Carriage Vehicle (taxi)
HGV	Heavy Goods Vehicle
IAQM	Institute of Air Quality Management
LAQM	Local Air Quality Management
LES	Low Emission Strategy
LEZ	Low Emission Zone
LGV	Light Goods Vehicle
000	Oxford City Council
NAEI	National Atmospheric Emissions Inventory
NO ₂	Nitrogen dioxide
NOx	Nitrogen oxides (NO + NO ₂)
NOAA	National Oceanic Atmospheric Administration
NTEM	National Trip End Model
NTS	National Travel Survey
PHI	Priority Habitat Inventory, a GIS dataset from Natural England
PHV	Private Hire Vehicle (taxi)
PM _{2.5}	Particulate matter 2.5 micrometres or less in diameter
PM10	Particulate matter 10 micrometres or less in diameter
RMSE	Root Mean Square Error
SSF	Smokeless Solid Fuel
TEMPro	Trip End Model Presentation Program
ZEBRA	Zero Emission Bus Regional Areas scheme
ZEZ	Zero Emission Zone

1. INTRODUCTION

The city of Oxford, as with many urban areas throughout the United Kingdom, is subject to poor air quality, particularly in areas with high levels of road traffic. In Oxford, nitrogen dioxide (NO₂) is still the pollutant of most concern, and the entire city has been a designated Air Quality Management Area (AQMA) for NO₂ since 2010.

The city's current Air Quality Action Plan (AQAP) sets out a list of actions that Oxford City Council (OCC) and its partners have committed to deliver during the period 2021-2025 in pursuit of an improvement of NO₂ levels in the city. OCC will soon be required to deliver a new Air Quality Action Plan (AQAP) in line with the Environment Act requirement that AQAPs are regularly reviewed and must be revised if a local authority considers there is a need for further or different measures to be taken in order to achieve air quality standards; or if significant changes to sources occur within the local area. In England, local authorities are expected to review AQAPs at least every five years. The AQAP measures are intended to be targeted towards the predominant sources of emissions within the area under OCC's jurisdiction. A source apportionment exercise is therefore required to identify the current percentage source contributions of emission sources in the city.

Air quality has improved in Oxford in recent years, with an 18% average reduction of annual mean NO₂ across the city between 2021 and 2023., In 2023, there were no exceedances of the legal limits within Oxford city's jurisdiction in all places considered of relevant exposure (i.e. all locations where members of the public are likely to be regularly present for a period of time appropriate to the averaging period of the annual mean limit value).

Although this is a very important milestone that has been achieved, OCC are committed to continue to reduce NO₂ to the lowest possible levels for the protection of human health. This commitment results from the 2021 World Health Organisation (WHO) guidelines^{1,2} which incorporate clear evidence of damage to human health at much lower concentrations than previously understood. Therefore, the city's current AQAP seeks to go further than the prevailing UK legal annual mean limit value for NO₂ of 40 μ g/m³, by establishing a much more stringent local annual mean NO₂ target of 30 μ g/m³ to be achieved by 2025 in recognition that there is no safe level of air pollution.³

Some of the most relevant air quality measures delivered under the city's current AQAP (2021-2025) include:

- The UK's first Zero Emission Zone (ZEZ) was launched in Oxford in February 2022, building on the work of the Low Emission Zone (LEZ) which was introduced for buses in 2014. Public consultation on expansion of the ZEZ is due in 2025⁴.
- 159 fully electric buses were introduced to the city from early 2024 to January 2025, from the Zero Bus Regional Areas (ZEBRA) scheme, which means that 69% of total bus mileage operating in the city are now operating in electric mode.
- Delivery of Energy SuperHub Oxford⁵.
- Delivery of an Oxford City-wide Smoke Control Area⁶.

This source apportionment study will focus on concentrations of NO₂, the main pollutant of concern, however particulate matter (PM_{10} and $PM_{2.5}$) will also be included in the emissions modelling, air quality concentration modelling and a complementary PM source apportionment provided.

³ Oxford City Council 2024 Air Quality Annual Status Report (ASR) Available online:

¹ World Health Organisation (2021) "WHO global air quality guidelines: particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide" Available online: <u>https://www.who.int/publications/i/item/9789240034228</u>

² World Health Organisation "What are the WHO air quality guidelines" Available online: <u>https://www.who.int/news-room/feature-stories/detail/what-are-the-who-air-quality-guidelines</u>

https://mycouncil.oxford.gov.uk/documents/s80203/Annual%20Air%20Quality%20Status%20Report.pdf Page iii

⁴ Oxfordshire County Council "Proposed wider zero emission zone" Available online: https://www.oxfordshire.gov.uk/residents/roads-and-transport/connecting-oxfordshire/city-centre-zez

⁵ Energy Superhub Oxford, Available online: <u>https://energysuperhuboxford.org/</u>

⁶ Oxford City Council "Smoke Control Areas" Available online: <u>https://www.oxford.gov.uk/air-quality-management/domestic-smoke-control-areas</u>

These dispersion model outputs will be used in conjunction with Defra air pollution background concentration maps to:

- Carry out source apportionment to understand the contribution of all sources of emissions to exceedances of the air quality objectives within Oxford's AQMA.
- Identify the reduction in pollutant emissions required to attain the OCC NO₂ annual mean target within the AQMA, to determine the scale of effort likely to be required.

2. METHOD STATEMENT

2.1 AIR DISPERSION MODELLING METHODOLOGY

The RapidAIR Urban Air Quality Modelling Platform⁷ was used to model air pollutant concentrations for this study. This is Ricardo's proprietary modelling system developed for urban air pollution assessment. It was set up for the ongoing 'Oxford ZEZ air quality and carbon modelling and assessment' which Oxfordshire County Council are currently leading, based on the model that was used previously in the 2017 Oxford Zero Emission Zone Feasibility and Implementation Study.

RapidAIR has been developed to provide graphic and numerical outputs which are comparable with other models used widely in the United Kingdom. The model approach is based on three elements:

- Road traffic emissions model conducted using fleet specific COPERT v.5.6 (via the Defra EFT) algorithms to prepare grams/kilometre/second (g km⁻¹ s⁻¹) emission rates of air pollutants originating from traffic sources.
- Convolution of an emissions grid with dispersion kernels derived from the USEPA AERMOD⁸ model, at resolutions ranging from 1 m to 20 m. AERMOD provides the algorithms which govern the dispersion of the emissions and is an accepted international model for road traffic studies.
- The kernel-based RapidAIR model running in GIS software to prepare dispersion fields of concentration for further analysis with a set of decision support tools coded by Ricardo in Python/arcpy.

RapidAIR includes an automated meteorological processor based on AERMET which obtains and processes meteorological data of a format suitable for use in AERMOD. Surface meteorological data is obtained from the NOAA online repository⁹ and upper air data is downloaded from the NOAA Radiosonde database.¹⁰

The model produces high resolution concentration fields at the city scale (down to a 1 m scale) so is ideal for spatially detailed compliance modelling. The combination of an internationally recognised model code and careful parameterisation matching international best practice makes RapidAIR ideal for this study.

A baseline air quality model was developed covering the city of Oxford as a combination of the years 2022. The model was based on the latest available data; however, it was determined that NO₂ monitoring data for automatic and non-automatic monitoring sites from 2023 may be impacted by unusual traffic conditions (as a result of the Botley Road closure in the vicinity of Oxford Station). As such, 2022 was the most recent full year of monitoring data available that is not impacted by this closure. Therefore 2022 monitoring data is used, alongside 2023 traffic data. In this report, we will refer to the baseline year as 2022.

Emission and concentration outputs were generated for the city of Oxford using the following methodology and datasets for the given years (in bold):

- Traffic flows (AADT) were taken from the **2023** baseline local traffic model provided by Atkins. The 2023 baseline local traffic model assumes normal traffic conditions (i.e. Botley Road is open).
- Fleet composition was calculated based on ANPR data recorded at 13 sites in Oxford city centre on the 25th, 26th, 27th and 28th April **2023**. Data were provided for the two directions of traffic flow at each site (defined as either east and west or north and south). The data were processed to inform the average number of unique daily vehicles visiting the city centre for each of the ZEZ charging bands and to provide a fuel type and Euro standard split for each vehicle type (cars, light goods vehicles

⁷ Ricardo RAPID AIR. Available online: <u>https://www.rapidair.co.uk/</u>

⁸ US EPA "Air Quality Dispersion Modeling - Preferred and Recommended Models". Available online: <u>https://www.epa.gov/scram/air-guality-dispersion-modeling-preferred-and-recommended-models</u>

⁹ National Oceanic and atmospheric Administration (NOAA) Institutional Repository Available online: <u>https://repository.library.noaa.gov/</u>

¹⁰ National Oceanic and atmospheric Administration (NOAA) Radiosonde database. Available online: <u>https://www.esrl.noaa.gov/roabs/</u>

(LGVs), heavy good vehicles (HGVs), buses, private hire taxis, Oxford Hackney taxis, and 'other' Hackney taxis).

- Road traffic emissions were generated by applying COPERT v5.6 emissions factors (most up to date at time of assessment).
- Administrative boundary wide concentration contour maps were generated using Ricardo's RapidAIR modelling system and application of **2022** meteorological data.
- The 2018 Defra air pollution background concentration maps (most up to date at time of assessment) were used to calculate the background concentration contribution for **2022**.
- The model was validated using **2022** air quality monitoring data.

2.2 MODEL VALIDATION

The model validation process was conducted in line with Defra's Local Air Quality Management Technical Guidance (TG22)¹¹.

Diffusion tube NO₂ measurements for 2022 within the City of Oxford AQMA (118 in total) were used for model verification after applying annualisation and national bias adjustment factors¹². As previously discussed in Section 2.1, 2023 monitoring data was not used for model validation as Botley Road was closed in 2023, such that traffic was not operating under "business as usual" conditions, which will have impacted the NO₂ concentrations measured in 2023.

The modelled 2022 vs measured 2022 concentrations at each of the monitoring locations were compared. A linear adjustment factor of **2.3366** was calculated for the road emissions component of the NO_X model (see Appendix 1).

Total NO_X was calculated as the sum of the adjusted NO_X road contribution from RapidAIR and the Defra 2018 background maps projected for 2022 (with main road sources removed from the background map). Total NO₂ concentrations were derived using the following equation (see Appendix 1 for further details):

$(NO_2 \text{ in } \mu g/m^3) = -0.0011(NO_X \text{ in } \mu g/m^3)^2 + 0.5824(NO_X \text{ in } \mu g/m^3) + 3.0955$

To evaluate model performance and uncertainty, the Root Mean Square Error (RMSE) for the observed vs predicted NO₂ annual mean concentrations was calculated. This guidance indicates that an RMSE of up to 4 μ g/m³ for NO₂ is ideal, and an RMSE of up to 10 μ g/m³ is acceptable. In this case the RMSE was calculated at **4.049 \mug/m³**, which is acceptable.

There are only two monitoring locations for PM_{10} and $PM_{2.5}$ within the City of Oxford AQMA. Therefore, it was not suitable to compare measured vs modelled concentrations for PM_{10} or $PM_{2.5}$ to generate bespoke adjustment factors for these pollutants. We have adopted an approach in line with Section 7.570 of the Technical Guidance LAQM.TG(22) which suggests that, in the absence of measured data for model verification of a traffic pollutant (in this case, PM_{10} and $PM_{2.5}$), it may be appropriate to apply the adjustment factor derived from another traffic pollutant to the pollutant that does not have any monitoring data available. RapidAIR was used to model PM_{10} and $PM_{2.5}$ annual mean concentrations arising from road traffic sources across the study area, and these values were subsequently multiplied by the linear adjustment factor (see above) to obtain adjusted PM_{10} and $PM_{2.5}$ road contribution values.

¹¹ DEFRA Local Air Quality Management Technical Guidance (TG22). Available online: <u>https://laqm.defra.gov.uk/wp-content/uploads/2022/08/LAQM-TG22-August-22-v1.0.pdf</u>

¹² The details on methodology and data for NO₂ diffusion tube measurements are available in the Oxford Air Quality Annual Status Report 2023: <u>https://www.oxford.gov.uk/download/601/download-the-air-quality-annual-status-report-2023</u>

2.3 ZEBRA MODEL

As discussed in Section 1, in January 2025, 159 electric buses were introduced to the city of Oxford from the ZEBRA scheme. At the time of this assessment, the scheme was yet to be implemented, so, to ensure that the results of this source apportionment study would be applicable in guiding the upcoming AQAP and future decisions around air quality management in Oxford, it was important that the source apportionment results represent the Oxford traffic fleet including the ZEBRA electric buses.

The baseline model was therefore adapted, to include 159 electric buses, representative of 69% of the total bus mileage operating in the city.

The proportion of buses that would be electric in the ZEBRA model fleet was set at 69%, as outlined in Table 2-1. It was assumed that the remaining buses in the fleet would be proportional to the 2022 baseline model proportions of Euro VI or newer, and older buses are below the Euro VI emissions standard. This represents a worst-case scenario for the remaining non-electric bus emissions.

Outside of this change to the proportion of buses by fuel type, the ZEBRA model used the same data inputs as the 2022 baseline model, including the AADT from the traffic model, and the fuel type and Euro standard proportions applied to the non-electric fleet. These proportions were applied uniformly across road links which had bus AADT in the baseline model.

Table 2-1 Assumed proportions of the Oxford bus fleet, under the baseline model and ZEBRA model.

Category Description	2022 Baseline model Percentages	2022 ZEBRA Model Percentages
Zero tailpipe emissions buses	0%	69%
Euro VI or newer buses	70%	22%
Older buses	30%	9%

The model road component for NO_x , PM_{10} and $PM_{2.5}$ emissions were adjusted using the same linear adjustment factor of **2.3366** that was calculated for the baseline NO_x model (see Section 2.2 and Appendix 1).

3. LOCATIONS FOR SOURCE APPORTIONMENT

Conducting a source apportionment assessment of road emission sources enables a better understanding of the nature of vehicles contributing to exceedances along roads in Oxford. A review was undertaken as part of the 2020 Source Apportionment Study (henceforth referred to as 'the 2020 Study') to determine the most appropriate locations for source apportionment to be conducted. This was based on the maximum NO_2 concentration predicted within the city of Oxford AQMA, using a national fleet, as well as the measured annual mean NO_2 at diffusion tube locations in 2019.

Hot spots are areas of high pollutant concentrations where relevant human exposure is present and are therefore the focus of the source apportionment study. Hot spots were identified in Oxford using the following methodology:

- Monitoring locations which showed a high concentration of NO₂ relative to the national Air Quality Objectives (AQOs).
- Extraction of high modelled NO₂ concentrations at locations of relevant exposure.
- Discussion and review of findings with OCC and confirmation of the three locations for source apportionment.

The same locations selected in the 2020 Study have been selected again for this source apportionment study, for the following reasons:

- 1. These continue to be hotspot areas, and therefore up to date knowledge of sources is needed to aid action planning for remaining areas of elevated concentrations.
- 2. To assess how impacts from different sources have changed over time at these locations.

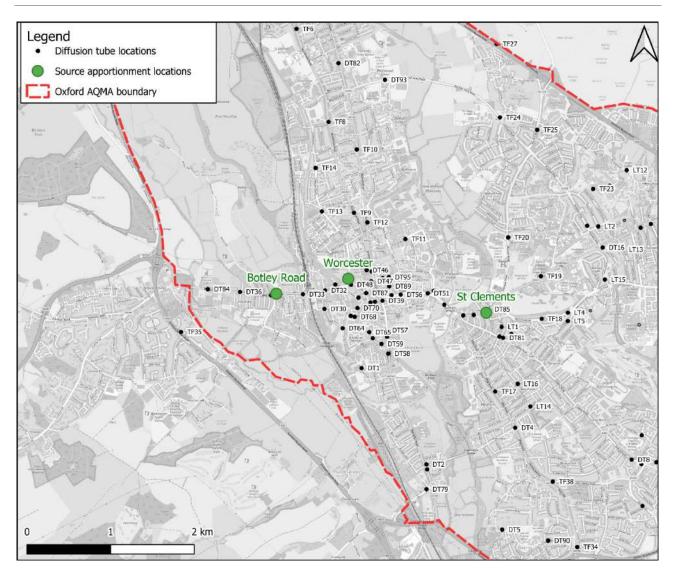

Table 3-1 shows the receptors selected for source apportionment within each designated hot spot location. Diffusion Tubes DT55, DT45 and DT35 are consistent with the locations selected for source apportionment in the 2020 Study. One additional receptor was selected for St Clements/ The Plain hotspot area (TF19), which is a monitoring location that is not representative of relevant exposure. TF19 was introduced in 2022 to evaluate the impact of future transport schemes in Oxford. TF19 is located directly on the road, which is enclosed within vegetation barriers either side of the road. This results in a canyon-effect, resulting high NO₂ concentrations measured to be 70 μ g/m³ in 2022 and 53 μ g/m³ in 2023. Section 3.1 further elaborates on the reasoning behind including TF19 in this study.

Table 3-1 Receptors selected for source apportionment for each hotspot area.

Hotspot area	Selected receptors
St Clements/ The Plain	DT55, TF19
Worcester Street	DT45
Botley Road	DT35

The three locations chosen for source apportionment are shown in Figure 3-1. Detailed summaries of the chosen hotspot locations are presented in Sections 3.1 to 3.3, including figures of the modelled concentrations of NO₂ in 2022 and diffusion tube locations labelled with the corresponding measured annual mean NO₂ concentration in 2022.

Figure 3-1 Diffusion tubes within the centre of Oxford City AQMA and locations selected for source apportionment.

3.1 ST CLEMENTS/ THE PLAIN

Figure 3-2 shows that in the vicinity of St Clements/The Plain there are high modelled and monitored concentrations present in 2022. Diffusion tube DT55 measures the highest NO₂ concentrations in the vicinity of the roundabout, with 43 μ g/m³ in 2022. This diffusion tube is in a street canyon and adjacent to a busy roundabout.

Figure 3-2 Baseline model results and measured NO2 in 2022 at St Clements/ The Plain.

The St Clements/ The Plain area also includes the diffusion tube at Headington Hill (TF19) in this source apportionment study (also shown in Figure 3-2). As referenced above, TF19 is a site of interest due to high measured NO₂ concentrations (70 μ g/m³ in 2022), which has been underpredicted by the 2022 baseline model. It is important to note that TF19 is not a location which is representative of human exposure. It was added to the monitoring network in 2022 with several other sites to assess potential AQ impacts from traffic displacement that results from future transport schemes. TF19 measured the highest NO₂ concentrations in the AQMA in 2022.

It is important to highlight that the modelling results do not indicate elevated concentrations or an exceedance of the NO₂ annual mean AQO at location TF19. The modelled 2022 concentrations are just above 20 μ g/m³. This location was removed from the baseline model validation as a result of being an extreme outlier. It was the only outlier removed. Whilst this site does not need to be investigated in terms of being a concern for human exposure to NO₂, it is useful to understand the sources which might be contributing to higher emissions at this location, and furthermore, to understand why the model might be underpredicting at this location.

Factors which might by contributing to the underpredicting of the model at TF19 include:

- Canyon effect TF19 is located on a road with walls at the height of the diffusion tube to the immediate side of the road (on both sides), above which steep slightly vegetated banks lead to a vegetation barrier of trees at height, in parallel to the road on both sides. The air quality dispersion model incorporates the effects of canyons from buildings, but not from vegetation.
- Data capture was at 67% for 2022 and 75% for 2023 and was adjusted for 2022 using annualisation calculations in line with the LAQM TG22 guidance (as required for diffusion tubes with >75% and >25% data capture). This means that the average annual concentration for TF19 is less accurate than an average taken across a full 12 months.

3.2 GEORGE STREET / PARK END STREET / WORCESTER STREET

This system of roads showed exceedances of the NO₂ annual mean AQO on Worcester Street in the 2022 baseline modelling, and to a lesser extent on Beaumont Street. These exceedances are in the centre of the road, so are less relevant for human exposure. However, diffusion tubes DT45 on Worcester Street and TF15 on Park End Street exceeded the OCC NO₂ annual mean objective of 30 μ g/m³ in 2022 (31 μ g/m³ and 36 μ g/m³ respectively).

Diffusion tubes DT32, DT42, DT43, DT44 and DT48 appear to be in locations with good dispersion (i.e. not in street canyons). DT46 is in an area with some limited dispersion, but not a street canyon. TF15 is located at a bus stop in a street canyon and is likely to be the worst location for dispersion in this area, but is not representative of human exposure. DT45 is the location that was chosen for source apportionment in the 2020 study. DT45 is adjacent to the location of highest modelled concentrations in this area (modelled NO₂ at DT45 is 35 μ g/m³). DT45 is in a street canyon, and is representative of human exposure. It was considered to still be the most suitable diffusion tube receptor location for source apportionment of Worcester Street for this source apportionment study.

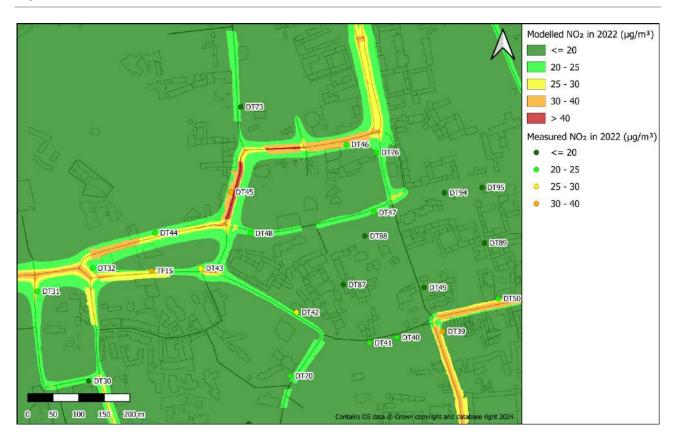


Figure 3-3 Baseline model results and measured NO₂ in 2022 at Worcester Steet.

3.3 BOTLEY ROAD

Botley Road is one of the major routes into the city with significant levels of traffic and high levels of human exposure at nearby houses. To the west, is the Botley Interchange roundabout on the A34, where modelled NO₂ concentrations are increased to above the AQO of 40 μ g/m³. There is no human exposure in this area of modelled exceedance beyond houses in the vicinity of DT84.

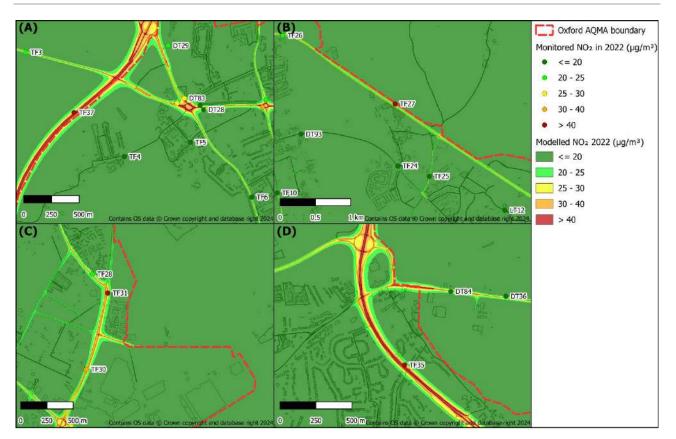
In April 2023, Botley Road was closed at the railway bridge (between Bridge Street and the Beckett Street/Park End Street roundabout), as part of a scheme to improve Oxford railway station and remains closed at the time of conducting this study. This closure will have impacts on the numbers and types of vehicles using the section of Botley Road which remains open. It will also have impacts to other roads in terms of displaced traffic.

DT35 was chosen as the diffusion tube most representative of this route in the 2020 Study and is still considered to be the most representative location for this route in this source apportionment study.

3.4 ADDITIONAL AREAS NOT TAKEN FORWARD FOR SOURCE APPORTIONMENT

3.4.1 Areas of elevated concentrations which are not representative of human exposure

There are a number of sites in exceedance of the AQO which come under the following group of sites, as set out in Oxford's 2024 Annual Status Report: "These sites have not been put in place to directly assess the level of human exposure to air pollution, but instead to measure the potential impact of future transport schemes on traffic displacement. They are located in isolated areas, (mostly around Oxford's ring road), at a considerable distance from residential zones, and hence they are not relevant for the direct purposes of the LAQM regime."¹³


- TF37 monitored exceedance in 2022 (42 µg/m³). Located outside of the AQMA and OCC's administrative boundary, directly adjacent to the A34.
- TF27 monitored exceedance in 2022 (42 µg/m³). Located directly adjacent to the A40.
- TF31 monitored exceedance in 2022 (43 µg/m³). Located directly adjacent to the A4142 Eastern By-pass Road
- TF35 monitored exceedance in 2022 (57 µg/m³). Located outside of the AQMA and OCC's administrative boundary, directly adjacent to the A34.¹⁴

https://mycouncil.oxford.gov.uk/documents/s80203/Annual%20Air%20Quality%20Status%20Report.pdf Page 36

¹³ Oxford City Council 2024 Air Quality Annual Status Report (ASR) Available online:

¹⁴ This location falls outside the City Council's jurisdiction, and forms part of an existing AQMA that is being managed by Vale of the White Horse District Council.

Figure 3-5 Baseline model results and measured NO_2 in 2022 at other areas of elevated concentrations (A) TF37, (B) TF27, (C) TF31 and (D) TF35

3.4.2 Other areas

High Street. On the High Street there are modelled exceedances of the AQO for NO₂, though these are in the centre of the roads. There are both modelled and monitored exceedances of OCC's local annual mean NO₂ target of 30 μ g/m³ (monitoring points DT56, DT51 and DT52).

Figure 3-6 Baseline model results and measured NO2 in 2022 on the High Street

Cuttleslowe Roundabout. There are modelled exceedances of the AQO for NO₂ in this area, though these are in the centre of the roads and roundabouts, and do not extend to locations of human exposure. Monitoring location DT26 is in exceedance of OCC's local annual mean NO₂ target of 30 μ g/m³ in 2022.

Figure 3-7 Baseline model results and measured NO₂ in 2022 at Cutteslowe Roundabout

4. SOURCE APPORTIONMENT OF MODELLED ROAD TRANSPORT EMISSIONS

This section presents results of source apportionment of road transport at the three hotspot locations: St Clements/ The Plain, Worcester Street, and Botley Road, based on air dispersion modelling. Source apportionment of non-road transport (background) concentrations at these hotspot locations is provided in Appendix 3.

These modelled results represent the baseline year 2022, but with electric "ZEBRA" buses included in the fleet. As previously discussed, by January 2025, 159 fully electric buses had been introduced to the city from the Zero Bus Regional Areas (ZEBRA) Scheme, accounting for 69% of total bus mileage operating in the city. These model results therefore assumes that 69% of all buses in the modelling domain are electric buses. All other model inputs remain the same as in the 2022 baseline model.

The key trends observed at all three chosen <u>air quality hot spot</u> locations are:

- Cars have the greatest contributions to NO_X, PM₁₀ and PM_{2.5} emissions.
 - Diesel cars contributed a higher proportion of NO_X emissions than petrol cars.
 - PM₁₀ and PM_{2.5} emissions have fairly equal contributions from petrol and diesel cars, with slightly higher contributions from petrol.
- LGVs and HGVs are the next greatest contributors, depending on location.
- Buses are the 4th contributor, depending on location
- Rigid HGVs contributed significantly more NO_X, PM₁₀ and PM_{2.5} emissions than articulated HGVs.
- Private hire vehicle (PHV) taxis contributed more to emissions from taxis than Oxford or other Hackney Carriage vehicles (HCVs).
- Diesel taxis (both PHVs and HCVs) contributed to more emissions than petrol taxis.
- For PM₁₀ and PM_{2.5} the background concentrations are considerably more than the road contribution. This is not the case for NO_x.

Table 4-1, Table 4-4 and Table 4-7 show the source apportionment in terms of percentage contribution of the major vehicle types to the total vehicular NOx, PM₁₀ and PM_{2.5} emissions. The percentage emissions again are presented in pie charts (Figure 4-1, Figure 4-2, Figure 4-4 and Figure 4-6).

Table 4-2, Table 4-5 and Table 4-8 show the source apportionment in terms of the amount of NOx, PM_{10} and $PM_{2.5}$ originating from each of these sources (in µg m⁻³).

Table 4-3, Table 4-6 and Table 4-9 show the source apportionment of modelled NO₂ concentrations at each of the source apportionment locations.

Figure 4-3, Figure 4-5 and Figure 4-7 show the total modelled NO₂ concentrations at each of the source apportionment locations. They compare the modelled results for the baseline fleet for 2022 with the results for the model run of the ZEBRA scenario for 2022. This demonstrates the extent of the estimated reduction in NO₂ as a result of the introduction of the electric buses at the source apportionment locations. In all locations, there are improvements in modelled NO₂ concentrations as a result of introducing the ZEBRA buses.

Appendix 2 breaks down taxi emissions by fuel type, and at all three locations, diesel PHVs and Diesel Oxford Hackney Carriages dominate NOx taxi emissions with fairly equal contributions, and diesel PHVs dominate for PM₁₀ and PM_{2.5}.

4.1 ST CLEMENT'S / THE PLAIN

Diffusion tube TF19 (Headington Hill) is included in Table 4-1 (percentage breakdown of road transport emissions), but not in Table 4-2 and Table 4-3. This is because TF19 was an outlier in the 2022/23 Baseline Model (as discussed in section 3.1), and therefore the concentration contributions from modelled road and background contributions will not be accurate at this location.

Along **St Clement's Street / The Plain diffusion tube DT55**, in the ZEBRA Scenario for 2022, source apportionment shows that cars account for approximately 60% of NO_x road emissions (51% of which are attributed to diesel cars), and approximately 74% of PM₁₀ and PM_{2.5} road emissions (37 – 39% from petrol cars, 31 - 33% from diesel). These are slightly higher than the results for Worcester Street and Botley Road for the ZEBRA scenario, which is to be expected, as a reduced contribution from buses to emissions will result in an increased contribution from other vehicle types. LGVs are now the next-largest contributor (where previously in the baseline scenario it was buses) at 17% for NO_x road emissions, and 11% for PM₁₀ and PM_{2.5} road emissions. This is followed by rigid HGVs being the next greatest source for NO_x road emissions (11%) and buses being the next greatest source for PM₁₀ and PM_{2.5} road emissions (6%).

Buses now account for 10% of NO_X road emissions and 6% of road emissions for PM_{10} and $PM_{2.5}$. The taxi fleet in total accounts for 2.5% of NO_X road emissions, and 4.5% of road emissions for both PM_{10} and $PM_{2.5}$. PHVs are contributing the greatest proportion of emissions of the three taxi categories, with 1% of NO_X road emissions and 3% for both PM_{10} and $PM_{2.5}$ road emissions. This is consistent for all three locations. These can be further broken down by fuel types, which is provided in Appendix 2.

At **diffusion tube TF19**, NO_X road emissions are more dominated by cars in the ZEBRA scenario than the baseline scenario. Cars are the greatest contributing vehicle type for NO_X and PM road emissions, accounting for nearly half (39% from diesel and 7% from petrol) of NO_X road emissions at TF19, and 62 - 63% of PM₁₀ and PM_{2.5} road emissions (31 - 33% from petrol cars, 26 - 28% from diesel) in the ZEBRA scenario. LGVs are the next greatest contributing vehicle type to road emissions, accounting for 22% of NO_x road emissions and 16% of PM₁₀ and PM_{2.5} road emissions, followed by HGVs, contributing 17% of NO_x road emissions and 8 - 9% of PM₁₀ and PM_{2.5} road emissions.

Buses now account for 13% of NO_X road emissions and 9% of road emissions for PM_{10} and $PM_{2.5}$. The taxi fleet in total accounts for 1.9% of NO_X road emissions, and 3.6% of road emissions for both PM_{10} and $PM_{2.5}$

Table 4-1 Source apportionment for all road transport emissions at DT55 and TF19 on St Clement's / The Plain (%) for the 2022 ZEBRA model fleet.

			Cars								Taxi		
	Cars (petrol)	Cars (diesel)	Car (petrol hybrid)	Car (diesel hybrid)	Car (electric)	Bus	HGV (Rigid)	HGV (Artic)	LGV	Taxi (Oxford HCV)	Taxi (Other HCV)	Taxi (PHV)	Total
DT55 – St	t Clements/ Th	e Plain Round	dabout										
NOx	9.0%	50.5%	0.1%	0.1%	0.0%	9.7%	11.3%	0.1%	16.8%	1.1%	0.2%	1.2%	100%
PM 10	39.4%	31.2%	1.6%	0.0%	2.2%	5.9%	4.2%	0.1%	11.1%	0.9%	0.2%	3.2%	100%
PM _{2.5}	36.9%	32.9%	1.5%	0.0%	2.3%	6.1%	4.5%	0.1%	11.3%	1.0%	0.2%	3.0%	100%
TF19 – He	eadington Hill				,								
NOx	6.9%	38.8%	0.1%	0.1%	0.0%	12.8%	17.4%	0.1%	22.0%	0.8%	0.1%	0.9%	100.0%
PM 10	33.5%	26.4%	1.3%	0.0%	1.9%	8.8%	8.1%	0.3%	16.1%	0.7%	0.1%	2.7%	100.0%
PM _{2.5}	31.2%	27.7%	1.3%	0.0%	2.0%	9.1%	8.6%	0.3%	16.3%	0.9%	0.2%	2.6%	100.0%

Table 4-2 Source apportionment for all road transport modelled concentrations at DT55 on St Clement's / The Plain (μ g/m³) for the 2022 ZEBRA model fleet (measured NO_x concentrations derived from the NO_x to NO₂ calculator).

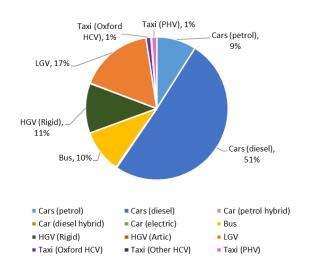

				Cars								Тахі		Total	Total
	Background	Cars (petrol)	Cars (diesel)	Car (petrol hybrid)	Car (diesel hybrid)	Car (electric)	Bus	HGV (Rigid)	HGV (Artic)	LGV	Taxi (Oxford HCV)	Taxi (Other HCV)	Taxi (PHV)	modelled (µg/m³)	measured NO _X (µg/m³)*
DT55 -	- St Clements/ T	he Plain R	oundabout												
NOx	15.5	4.8	26.9	0.1	0.0	0.0	5.2	6.0	0.0	8.9	0.6	0.1	0.6	68.6	80.8
PM 10	14.7	2.4	1.9	0.1	0.0	0.1	0.4	0.3	0.0	0.7	0.1	0.0	0.2	20.9	
PM _{2.5}	10.2	1.2	1.1	0.1	0.0	0.1	0.2	0.2	0.0	0.4	0.0	0.0	0.1	13.5	

Table 4-3 Source apportionment for all road transport measured concentrations at DT55 on St Clement's / The Plain (µg/m³) for the 2022 ZEBRA model fleet (NO₂ concentration measured at DT55 in 2022).

				Cars								Taxi		Total	Total
	Background	Cars (petrol)	Cars (diesel)	Car (petrol hybrid)	Car (diesel hybrid)	Car (electric)	Bus	HGV (Rigid)	HGV (Artic)	LGV	Taxi (Oxford HCV)	Taxi (Other HCV)	Taxi (PHV)	Modlelled NO₂ (µg/m³)	Measured NO₂ (µg/m³)
NO ₂	16.6	2.4	13.3	0.0	0.0	0.0	2.6	3.0	0.0	4.4	0.3	0.0	0.3	37.9	43.1

*Background NO₂ was estimated by applying the same percentage of NOx that is background in the modelled results, to the total measured NO₂.

Figure 4-1 Pie chart representation of source apportionment for all road transport emissions on St Clement's / The Plain – DT55 (%) for the 2022 ZEBRA model.

St Clement's / The Plain DT55 - NOx

St Clement's / The Plain DT55 - PM₁₀

Cars (petrol),

39%

Bus

LGV

Taxi (PHV)

Taxi (Oxford_ Taxi (PHV), 3%

Cars (diesel)

Car (electric)

HGV (Artic)

Taxi (Other HCV)

HCV), 1%

LGV, 11%

HGV (Rigid),

4%

Bus. 6% Car (electric),

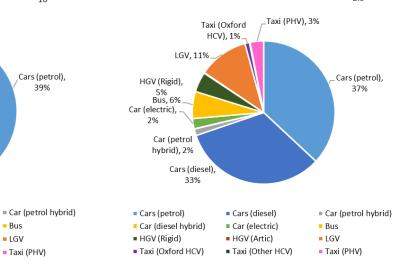
Cars (diesel),

31%

Car (diesel hybrid)

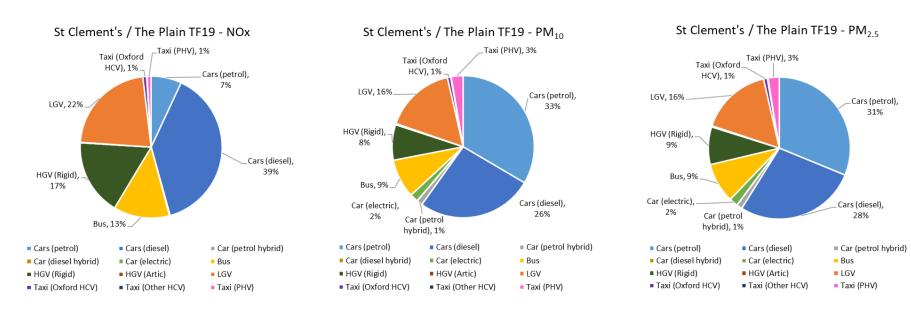
Taxi (Oxford HCV)

Cars (petrol)


HGV (Rigid)

2%

Car (petrol


hybrid), 2%

St Clement's / The Plain DT55 - PM_{2.5}

Ricardo | Issue 4.0 | 05/02/2025

Figure 4-2 Pie chart representation of source apportionment for all road transport emissions on St Clement's / The Plain – TF19 (%) for the 2022 ZEBRA model.

Figure 4-3 Modelled total NO₂ concentrations (2022) at St Clement's / The Plain using (A) a baseline fleet and (B) the ZEBRA fleet in which 69% of buses are zero emission.

4.2 WORCESTER STREET

On **Worcester Street**, at diffusion tube DT45, in the ZEBRA Scenario for 2022/2023, cars again dominate the road emissions, accounting for 50% of the NO_X, 68% of the PM₁₀, and 67% of PM_{2.5} road emissions, which is similar to the baseline results. This due to the small contribution of buses to emissions at Worcester Street in the baseline scenario. In the ZEBRA scenario, diesel cars account for 42% of the total 50% of NO_X road emissions from cars, and for PM₁₀ and PM_{2.5}, 33 - 36% of road emissions were from petrol cars and 28 – 30% were from diesel cars. The next greatest contributing vehicle type to road emissions on Worcester Street is LGVs comprising 29% of NO_X road emissions, and 21% of PM₁₀ and PM_{2.5} emissions, followed by HGVs, comprising 18% of NO_X road emissions, and 7% and 8% of PM₁₀ and PM_{2.5} road emissions respectively.

Buses account for 1% of NO_x road emissions and 0.6% of PM₁₀ and PM_{2.5} road emissions on Worcester Street, which is the lowest proportion of bus emissions across all three locations. Again, this is consistent with baseline results. The taxi fleet accounts for 2% of NO_x road emissions and 4% of PM₁₀ and PM_{2.5} road emissions. PHVs are contributing the greatest proportion of emissions of the three taxi categories, with 1% of NO_x road emissions and 3% for both PM₁₀ and PM_{2.5} road emissions, and this is the same for all three locations. These can be further broken down by fuel types, which is provided in Appendix 2.

Table 4-4 Source apportionment for all road transport emissions on Worcester Street (%) for the 2022 ZEBRA model fleet.

			Cars								Taxi		
Worcester Street	Cars (petrol)	Cars (diesel)	Car (petrol hybrid)	Car (diesel hybrid)	Car (electric)	Bus	HGV (Rigid)	HGV (Artic)	LGV	Taxi (Oxford HCV)	Taxi (Other HCV)	Taxi (PHV)	Total
NOx	7.4%	42.4%	0.1%	0.1%	0.0%	1.1%	18.1%	0.1%	28.7%	0.9%	0.1%	1.0%	100%
PM ₁₀	35.8%	28.3%	1.4%	0.0%	2.0%	0.6%	7.2%	0.2%	20.5%	0.8%	0.1%	2.9%	100%
PM _{2.5}	33.4%	29.8%	1.4%	0.0%	2.1%	0.6%	7.7%	0.2%	20.9%	0.9%	0.2%	2.7%	100%

Table 4-5 Source apportionment for all road transport modelled concentrations on Worcester Street (μ g/m³) for the 2022 ZEBRA model fleet (measured NO_x concentrations derived from the NO_x to NO₂ calculator).

				Cars								Тахі		Total	Total
Worcester Street	Background	Cars (petrol)	Cars (diesel)	Car (petrol hybrid)	Car (diesel hybrid)	Car (electric)	Bus	HGV (Rigid)	HGV (Artic)	LGV	Taxi (Oxford HCV)	Taxi (Other HCV)	Taxi (PHV)	modelled (µg/m³)	measured NO _X (µg/m³)*
NOx	19.0	3.3	18.7	0.0	0.0	0.0	0.5	8.0	0.1	12.6	0.4	0.1	0.4	62.9	52.5
PM 10	14.3	1.6	1.3	0.1	0.0	0.1	0.0	0.3	0.0	0.9	0.0	0.0	0.1	18.9	
PM2.5	9.6	0.8	0.7	0.0	0.0	0.1	0.0	0.2	0.0	0.5	0.0	0.0	0.1	12.1	

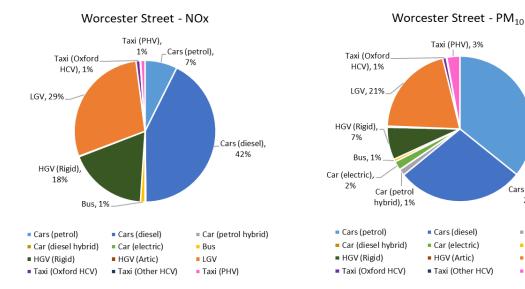
Table 4-6 Source apportionment for all road transport measured concentrations on Worcester Street (µg/m³ for the 2022 ZEBRA model fleet (NO₂ concentration measured at DT45 in 2022).

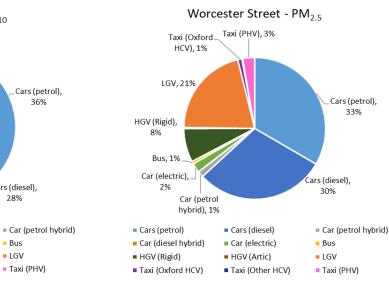
				Cars								Taxi		Total	Total
	Background	Cars (petrol)	Cars (diesel)	Car (petrol hybrid)	Car (diesel hybrid)	Car (electric)	Bus	HGV (Rigid)	HGV (Artic)	LGV	Taxi (Oxford HCV)	Taxi (Other HCV)	Taxi (PHV)	Modlelled NO₂ (µg/m³)	Measured NO₂ (μg/m³)
NO ₂	8.7	1.6	9.4	0.0	0.0	0.0	0.2	4.0	0.0	6.3	0.2	0.0	0.2	35.4	30.8

*Background NO2 was estimated by applying the same percentage of NOx that is background in the modelled results, to the total measured NO2.

36%

Cars (diesel),


28%


Bus

LGV

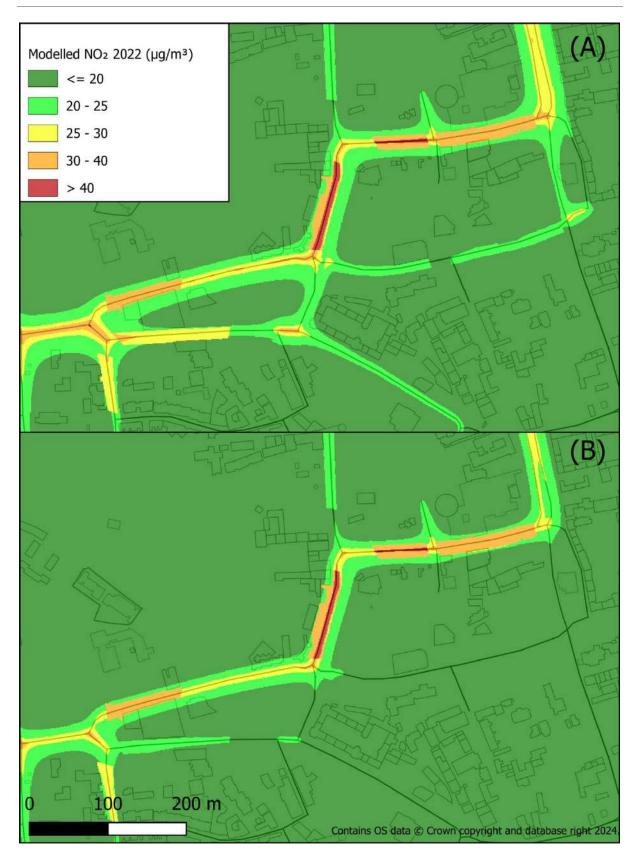

Taxi (PHV)

Figure 4-4 Pie chart representation of source apportionment for all road transport emissions on Worcester Street (%) for the 2022 ZEBRA model.

Figure 4-5 Modelled total NO₂ concentrations (2022) at Worcester Street using (A) a baseline fleet and (B) the ZEBRA fleet in which 69% of buses are zero emission.

4.3 BOTLEY ROAD

On **Botley Road**, at diffusion tube DT25, in the ZEBRA Scenario for 2022, cars account for 53% of road NO_x emissions, 29% of PM₁₀ road emissions and 30% of PM_{2.5} road emissions. These contributions are slightly higher in the ZEBRA scenario than the baseline, and the results are similar to St Clements/ The Plain DT55 and Worcester Street. For NO_x road emissions at Worcester Street, diesel cars accounted for 44% of the total 53% of NO_x road emissions from cars. For PM₁₀ and PM_{2.5}, 34 - 37% of road emissions were from petrol cars and 29 – 30% were from diesel cars. The next greatest contributing vehicle type to emissions on Worcester Street were LGVs comprising 27% of NO_x road emissions, and 18% of PM₁₀ and PM_{2.5} road emissions, followed by HGVs comprising 13% of NO_x road emissions, and 7% of PM₁₀ and PM_{2.5} road emissions.

Buses now account for 4% of NO_X road emissions and 3% of PM₁₀ and PM_{2.5} road emissions. The taxi fleet in total accounts for 2% of NO_X road emissions, and 4% of road emissions for both PM₁₀ and PM_{2.5}. PHVs are contributing the greatest proportion of emissions of the three taxi categories, with 1% of NO_X road emissions and 3% for both PM₁₀ and PM_{2.5} road emissions, and this is the same for all three locations. These can be further broken down by fuel types, which is provided in Appendix 2.

Table 4-7 Source apportionment for all road transport emissions on Botley Road (%) for the 2022 ZEBRA model fleet.

			Cars								Тахі		
	Cars (petrol)	Cars (diesel)	Car (petrol hybrid)	Car (diesel hybrid)	Car (electric)	Bus	HGV (Rigid)	HGV (Artic)	LGV	Taxi (Oxford HCV)	Taxi (Other HCV)	Taxi (PHV)	Total
NOx	8.4%	44.3%	0.1%	0.1%	0.0%	4.4%	13.3%	0.1%	27.2%	1.0%	0.2%	1.0%	100%
PM ₁₀	36.5%	28.5%	1.4%	0.0%	2.0%	3.1%	6.8%	0.2%	17.5%	0.8%	0.1%	3.0%	100%
PM _{2.5}	34.4%	29.9%	1.4%	0.0%	2.2%	3.2%	7.2%	0.2%	17.7%	0.9%	0.2%	2.8%	100%

Table 4-8 Source apportionment for all road transport modelled concentrations on Botley Road ($\mu g/m^3$) for the 2022 ZEBRA model fleet (NO₂ concentrations derived from the NO_x to NO₂ calculator).

				Cars								Taxi		Total	Total
	Background	Cars (petrol)	Cars (diesel)	Car (petrol hybrid)	Car (diesel hybrid)	Car (electric)	Bus	HGV (Rigid)	HGV (Artic)	LGV	Taxi (Oxford HCV)	Taxi (Other HCV)	Taxi (PHV)	modelled (µg/m³)	measured NOx (µg/m³)*
NOx	17.3	1.8	9.6	0.0	0.0	0.0	0.9	2.9	0.0	5.9	0.2	0.0	0.2	39.0	38.0
PM 10	14.3	1.0	0.8	0.0	0.0	0.1	0.1	0.2	0.0	0.5	0.0	0.0	0.1	17.0	
PM _{2.5}	9.6	0.5	0.4	0.0	0.0	0.0	0.0	0.1	0.0	0.3	0.0	0.0	0.0	11.1	

Table 4-9 Source apportionment for all road transport measured concentrations on Botley Road (µg/m³) for the 2022 ZEBRA model fleet (NO₂ concentration measured at DT35 in 2022).

	Background	Cars									Тахі			Total	Total
		Cars (petrol)	Cars (diesel)	Car (petrol hybrid)	Car (diesel hybrid)	Car (electric)	Bus	HGV (Rigid)	HGV (Artic)	LGV	Taxi (Oxford HCV)	Taxi (Other HCV)	Taxi (PHV)	Modlelled NO ₂ (µg/m ³)	Measured NO ₂ (µg/m ³)
NO ₂	12.2	1.0	5.1	0.0	0.0	0.0	0.5	1.5	0.0	3.1	0.1	0.0	0.1	24.1	23.7

*Background NO₂ was estimated by applying the same percentage of NOx that is background in the modelled results, to the total measured NO₂.

Figure 4-6 Pie chart representation of source apportionment for all road transport emissions on Botley Road (%) for the 2022 ZEBRA model.

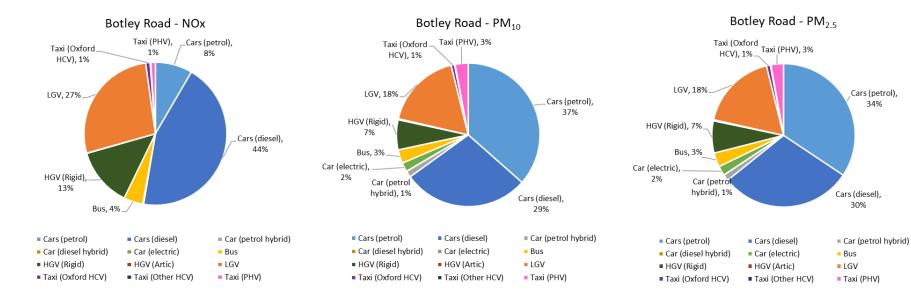
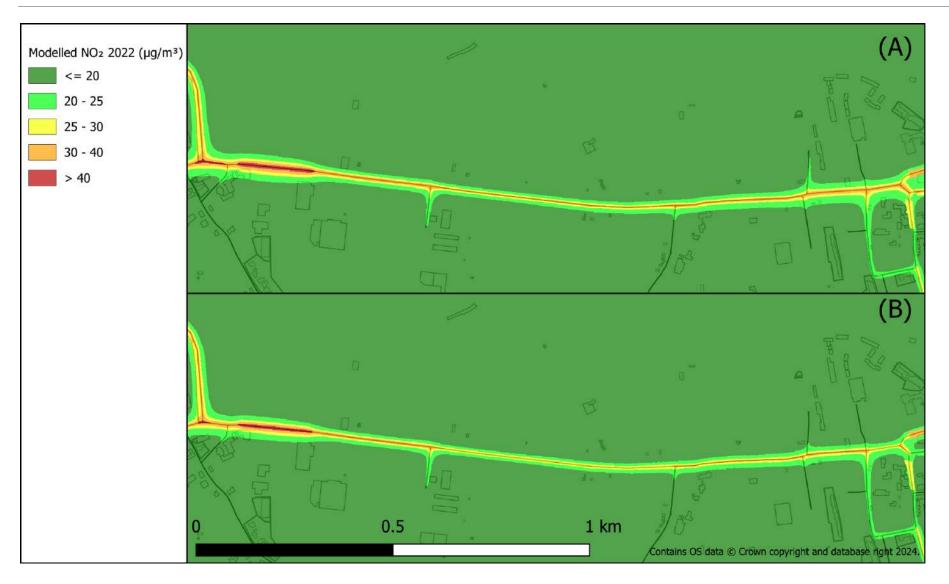



Figure 4-7 Modelled total NO₂ concentrations (2022) at Botley Road using (A) a baseline fleet and (B) the ZEBRA fleet in which 69% of buses are zero emissions.

4.4 COMPARISON TO 2022 BASELINE

In this section the ZEBRA model results are compared to the baseline results for 2022. Table 4-10 shows the pollutant concentrations attributable to buses in the baseline, and following the introduction of the ZEBRA buses. The reduction in concentration is also given. Of the three hotspot locations, the greatest impact of the ZEBRA bus scheme will be seen at diffusion tube DT55 at St Clements / The Plain, with a reduction of 5.82 μ g/m³ in NO₂ concentrations. Botley Road is the location with the next greatest improvement in NO₂ concentrations as a result of the ZEBRA bus scheme. The reductions seen in NO₂ at Worcester Street is marginal, due to lower levels of bus activity at this location.

Improvements in PM₁₀ and PM_{2.5} concentrations are also small across all three locations. This is expected, NO₂ emissions from buses are largely tailpipe or exhaust emissions. There are no tailpipe or exhaust emissions from electric buses. However, electric buses will still have non-exhaust emissions of PM from brake and tyre wear, and road abrasion.

Table 4-10 Comparison of results between the baseline model and the ZEBRA model: Pollutant **concentrations attributed to bus** emissions (in µg m⁻³).

	Total Modelled NO ₂ (ug.m ³)				odelled PN	l ₁₀ (ug.m³)	Total Modelled PM _{2.5} (ug.m ³)		
	Baseline	ZEBRA	Reduction	Baseline	ZEBRA	Reduction	Baseline	ZEBRA	Reduction
St Clement's / The Plain DT55	8.38	2.56	5.82	1.17	0.36	0.81	0.65	0.20	0.45
Worcester Street DT45	0.76	0.23	0.53	0.09	0.03	0.06	0.05	0.02	0.04
Botley Road DT35	1.74	0.50	1.24	0.27	0.08	0.19	0.15	0.05	0.10

Table 4-11 shows the difference in total modelled NO₂, PM₁₀ and PM_{2.5} concentrations between the baseline scenario, and following the introduction of the ZEBRA buses. Overall, the impact of the electric buses from the ZEBRA scheme reduces modelled NO₂ by 14% at St Clements/ The Plain, by 8% at Botley Road, and by 2% at Worcester Street. At St Clements/ The Plain, total modelled PM₁₀ concentrations are reduced by 4% and PM_{2.5} by 3%. There is a 1% reduction in total modelled PM₁₀ and PM_{2.5} concentrations at both Worcester Street and Botley Road.

Table 4-11 Comparison of results between the baseline model and the ZEBRA model: **Total pollutant** concentrations (in μ g m⁻³).

	Total Modelled NO ₂ (ug.m ³)			Total Mo	odelled PN	l ₁₀ (ug.m³)	Total Modelled PM _{2.5} (ug.m ³)		
	Baseline	ZEBRA	% Reduction	Baseline	ZEBRA	% Reduction	Baseline	ZEBRA	% Reduction
St Clement's / The Plain DT55	44.0	37.9	14%	21.7	20.9	4%	14.0	13.5	3%
Worcester Street DT45	36.3	35.4	2%	19.0	18.9	1%	12.2	12.1	1%
Botley Road DT35	26.3	24.1	8%	17.2	17.0	1%	11.2	11.1	1%

Table 4-12 applies the percentage reductions calculated from a comparison of the baseline modelled results against the "ZEBRA" modelled results to the latest available monitoring data for the monitoring locations at St Clements/ The Plain (DT55), Worcester Street (DT45) and Botley Road (DT35). This gives us an estimate of improvements that might be achieved at each location, as a results of introducing the ZEBRA buses, based on the latest available monitoring data.

Both 2022 and 2023 monitoring data have been included in this table, as the latest available monitoring data for 2023 may not reflect normal traffic conditions due to the closure of Botley Road in this monitoring year, as previously discussed.

The estimations in Table 4-12 show that at DT55 in St Clements/ The Plain, a 14% decrease in NO₂ concentrations as a result of ZEBRA buses being introduced brings the 2022 monitored 43 μ g/m³ at DT55 under the AQO to 37 μ g/m³. However, the ZEBRA buses may not be sufficient to achieve the OCC target of 30 μ g m³ – additional emissions reduction measures may be needed.

Table 4-12 Estimated reductions in NO₂ concentrations as a result of introduction of ZEBRA buses.

	Monitore concentratio		Estimated pollutant reduction with ZEBRA	Estimated NO₂ concentrations with ZEBRA buses (μg/m³)		
	2022	2023	buses (%)	2022	2023	
St Clement's / The Plain DT55	43	38	14%	37	33	
Worcester Street DT45	31	25	2%	30	24	
Botley Road DT35	24	19	8%	22	17	

4.5 COMPARISON WITH THE 2020 STUDY

This section compares the current results for the 2022 ZEBRA model against the previous "2020 Source Apportionment Study" results for 2018.

At St Clements/ The Plain, there was a decrease in total measured NO₂ from 46.0 μ g/m³ in 2018 to 43.1 μ g/m³ in 2022. Figure 4-8 shows that in 2018, the main sources of NOx at St Clements / The Plain are buses, which were contributing more than half the emissions for all three pollutants from vehicles. In the 2022 ZEBRA model source apportionment, contributions from buses to all pollutants are significantly decreased. This improvement is likely as a result of the introduction of the electric buses, but this may also be due to other improvements to the bus fleet (such as upgrades to Euro VI emissions standard) or changes to bus activity at this location. Contributions from cars are increased in 2022 compared to the 2018 source apportionment.

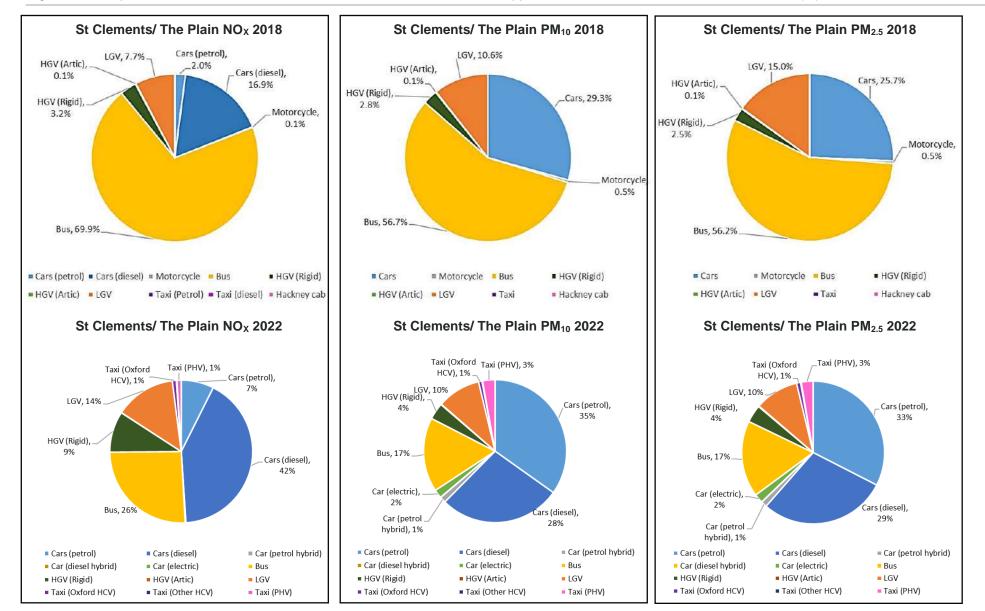
At Worcester Street, there was a decrease in total measured NO₂ from 37.0 μ g/m³ in 2018 to 30.8 μ g/m³ in 2022. This is the greatest improvement of the three hotspot locations. The decrease in NO₂ at this location may be the result of roadworks undertaken in 2020 to improve the Worcester Street Junction^{15,16}, making it safer for cyclists and improving overall traffic flows. It's worth noting that AADT traffic flows are relatively unchanged in this period¹⁷, suggesting that the improvement can by largely explained by the changes at the junction which have improved the traffic flow.

Figure 4-9 shows that at Worcester Street, cars are the biggest contributor to emissions for all pollutants in both 2018 and 2022, but there is an increase in contributions from cars in 2022, particularly from PM_{10} and $PM_{2.5}$, as well as a decrease in PM_{10} and $PM_{2.5}$ contributions from LGVs, and a decrease in contributions from buses for all pollutants.

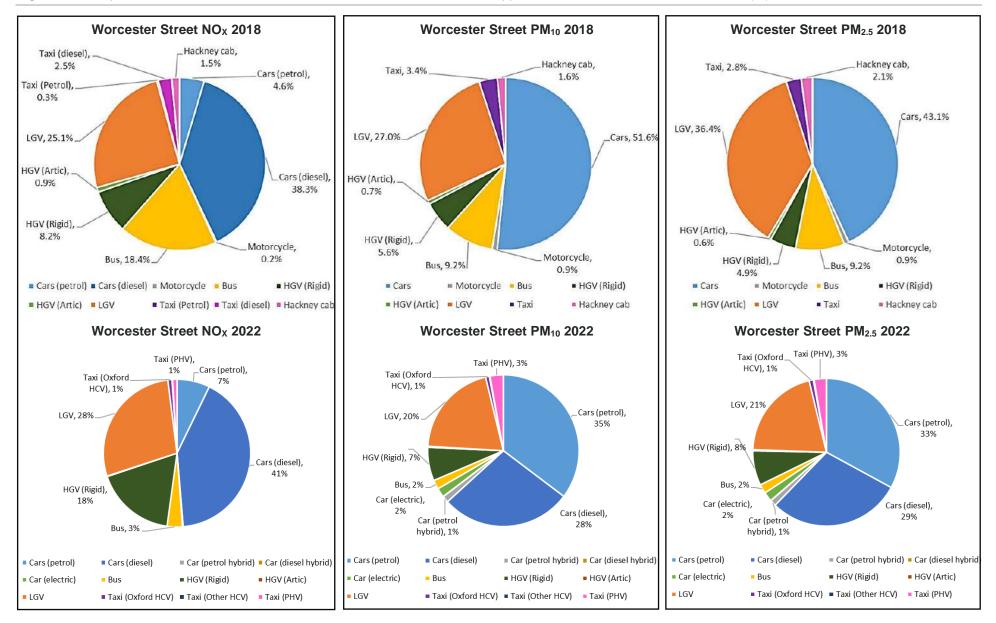
At Botley Road, there was a decrease in total measured NO₂ from 32.0 μ g/m³ in 2018 to 30.8 μ g/m³ in 2022. This is the smallest improvement of the three hotspot locations, but also the location with the lowest measured NO₂ of the three. Figure 4-10 shows that at Botley Road cars are the biggest contributor to emissions for all pollutants in both 2018 and 2022, though for NOx, contributions from buses are a close second biggest contributor. Contributions from buses to all pollutants decreased between 2018 and 2022. Contributions from most other vehicles, particularly cars, have increased. An exception to this is a decrease in PM₁₀ and PM_{2.5} contributions from LGVs.

For the 2020 Study, taxi data was more limited – it was only available for Worcester Street and classifies all taxis into: Taxi (diesel), taxi (petrol) and Hackney cabs (all). These differ from the taxi classes used in the 2022 source apportionment, which was able to use more detailed taxi data from the traffic model and ANPR surveys, and classified taxis into Private Hire Vehicles (PHVS), Oxford Hackney Carriage Vehicles (Oxford HCVs) and other Hackney Carriage Vehicles (Other HCVs), with extra detail on fuel types for these broken down in Appendix 2. Additionally, 2018 source apportionment included motorcycles, which are not included in the 2022 source apportionment as this data was not included in the underlying 2023 traffic model. Therefore, it is not possible to directly compare source apportionment results for taxis and motorcycles between 2018 and 2022.

Other trends have remained the same in both studies:


- Diesel cars contributed a higher proportion of NOx emissions than petrol cars.
- Rigid HGVs contributed significantly more NOx, PM₁₀ and PM_{2.5} emissions than artic HGVs.
- Diesel taxis contributed a higher proportion of NOx emissions than petrol taxis (see Appendix 2).
- For PM₁₀ and PM_{2.5} the background concentrations are considerably more than the road contribution. This is not the case for NOx.

¹⁵ Oxford Mail (2020) "Worcester Street roadworks, Oxford: council pledge to tackle delays" Available online: <u>https://www.oxfordmail.co.uk/news/18225666.worcester-street-roadworks-oxford-council-pledge-tackle-delays/</u>


¹⁶ Oxford Mail (2020) "Worcester Street roadworks finished during coronavirus lockdown" Available online: <u>https://www.oxfordmail.co.uk/news/18357414.worcester-street-roadworks-finished-coronavirus-lockdown/</u>

¹⁷ Oxfordshire County Council ArcGIS map of AADT counts. Closest count point ID A4144. v Available online: <u>https://oxfordshire.maps.arcgis.com/apps/webappviewer/index.html?id=afe8bef2e7514f91bb1bf6ec034fb69b</u>

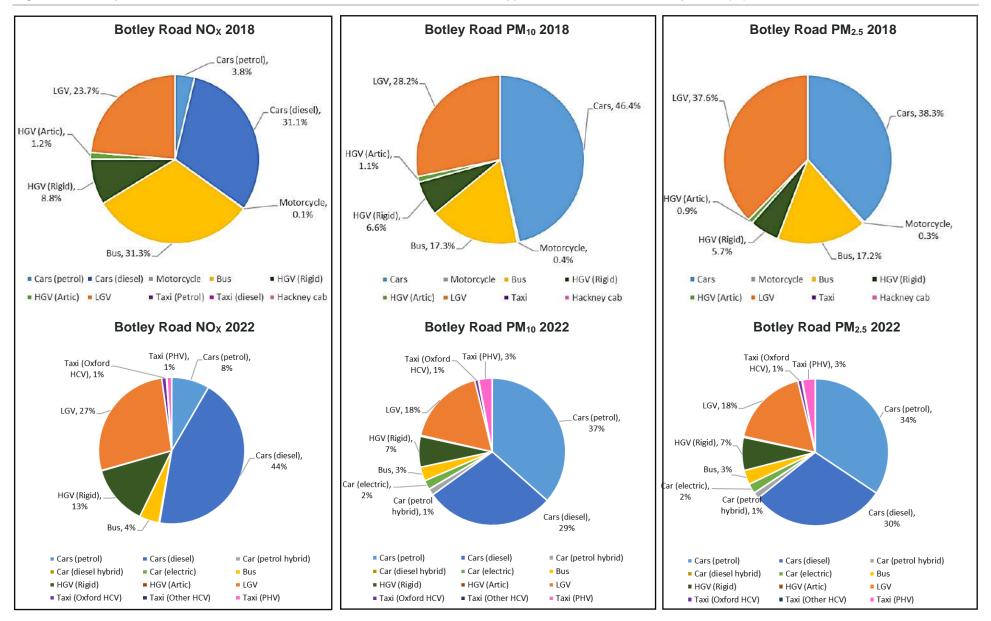

Figure 4-8 Comparison of the 2018 baseline and the ZEBRA 2022 model source apportionment results for St Clements / The Plain (%).

Figure 4-9 Comparison of the 2018 baseline and the ZEBRA 2022 model source apportionment results for Worcester Street (%).

Figure 4-10 Comparison of the 2018 baseline and the ZEBRA 2022 model source apportionment results for Botley Road (%).

5. SOURCE APPORTIONMENT OF NAEI EMISSIONS

The UK National Atmospheric Emissions Inventory (NAEI) estimates annual pollutant emissions for the UK on an annual basis¹⁸. The latest available data is for the year 2022, which aligns with the baseline model year for this report. The NAEI calculates and reports on the quantity of pollutants that are emitted to air. This impacts on the concentrations of pollution in the air, although there is not a direct relationship between the two as concentrations can be affected by weather patterns, chemical transformations, and pollutants emitted elsewhere.¹⁹

To gain an understanding of the key polluting sectors across the wider Oxford area, including contributions from non-road sources, the NAEI emissions data has been used to apportion contributions to NO_X as NO_2 , PM_{10} and $PM_{2.5}$ across both the whole Oxford administrative area, and within Oxford inner city centre.

The National Atmospheric Emissions Inventory (NAEI) emissions maps^{20,21,22} are downloaded at 1 km x 1 km resolution for both the Oxford City Council administrative boundary and Oxford inner city cordon. boundary. The total emissions for each NAEI sector were summed across the whole of the local authority and inner city. These emissions were converted to a percentage of all emissions across both areas. The sectors are described in Table 5-1.

Emission source sectors	Pollutants					
Combustion in energy and transformation industry (or "Energy production")	NO _x as NO ₂ , PM ₁₀ , PM _{2.5}					
Non-Industrial combustion (or "Domestic combustion") total	NO _X as NO ₂ , PM ₁₀ , PM _{2.5}					
- Commercial	PM _{2.5}					
- Domestic Smokeless Solid Fuel (SSF)	PM _{2.5}					
- Domestic Wood	PM _{2.5}					
- Domestic Other	PM _{2.5}					
Combustion in manufacturing industry (or "Industry combustion")	NO _x as NO ₂ , PM ₁₀ , PM _{2.5}					
Production processes ²³	NO _X as NO ₂ , PM ₁₀ , PM _{2.5}					
Extraction and distribution of fossil fuels and geothermal energy (or "Offshore")	NO _X as NO ₂ , PM ₁₀ , PM _{2.5}					
Solvents	NO _X as NO ₂ , PM ₁₀ , PM _{2.5}					
Road transports total	NO _x as NO ₂ , PM ₁₀ , PM _{2.5}					
- Major roads (tailpipe)	NO _X as NO ₂ , PM ₁₀ , PM _{2.5}					
- Minor roads (tailpipe)	NO_X as NO_2 , PM_{10} , $PM_{2.5}$					
- Road abrasion	PM10, PM2.5					
- Tyre and brake-wear	PM10, PM2.5					
- Cold starts	NO _X as NO ₂ , PM _{2.5}					
Non-Road Transport total	NO _X as NO ₂ , PM ₁₀ , PM _{2.5}					

Table 5-1 NAEI emission source sectors for NO_x/NO₂, PM₁₀ and PM_{2.5}.

¹⁸ NAEI "The UK National Atmospheric Emissions Inventory (NAEI)" Available online: <u>https://naei.energysecurity.gov.uk/</u>

¹⁹ NAEI "Air Pollutants" Available online: https://naei.energysecurity.gov.uk/air-pollutants

NO₂) Emission map data for Nitrogen oxides (NOx expressed as 2022. NAEI. Available online[.] in https://naei.energysecurity.gov.uk/emissionsapp/ Emission data PM_{10} (Particulate Matter 10µm) in 2022, NAEI, 2022, Available online: map for < https://naei.energysecurity.gov.uk/emissionsapp/

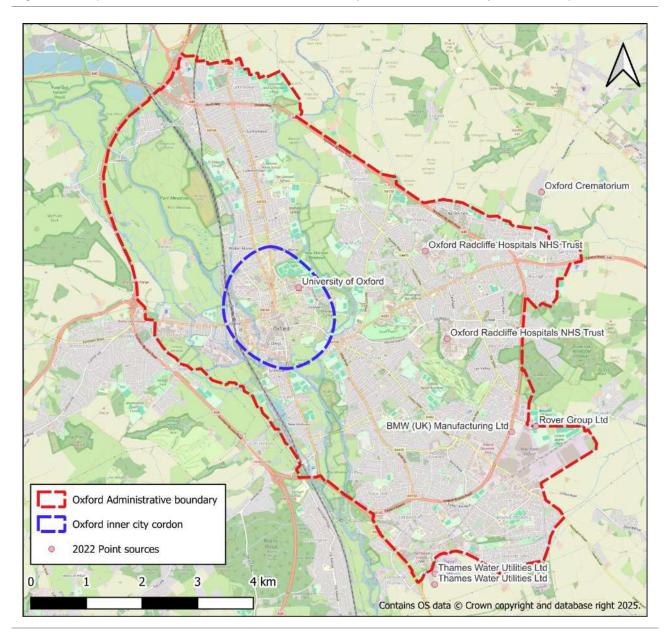
²² Emission map data for PM_{2.5} (Particulate Matter < 2.5µm) in 2022, NAEI, 2022, Available online: <u>https://naei.energysecurity.gov.uk/emissionsapp/</u>

²³ "Production processes" includes emissions from sectors such as metal production, chemical processing, fuel production, and other manufacturing, as well as emissions from construction.

-	Non-road mobile machinery ²⁴	NO _x as NO ₂ , PM ₁₀ , PM _{2.5}
-	Aircraft	NO _X as NO ₂ , PM _{2.5}
-	Rail	NO _X as NO ₂ , PM ₁₀ , PM _{2.5}
-	Shipping	NO _X as NO ₂ , PM ₁₀ , PM _{2.5}
-	Other transport (including inland waterways and military aircraft)	NO _X as NO ₂ , PM ₁₀ , PM _{2.5}
Waste of	collection, treatment and disposal activities	NO _X as NO ₂ , PM ₁₀ , PM _{2.5}
Agricult	ure and farming	NO _X as NO ₂ , PM ₁₀ , PM _{2.5}
Other S	ources and Sinks (or "Nature")	NO _x as NO ₂ , PM ₁₀ , PM _{2.5}
Point so	burces ²⁵	NO _X as NO ₂ , PM ₁₀ , PM _{2.5}

Major road tailpipe emissions, grouped together with road abrasion and tyre and brake-wear (and referred to in Sections 5.1 and 5.2 as "major road" emissions), has been broken down to vehicle type emissions using our emissions modelling from Section 4.

- The Defra background map²⁶ concentrations at a 1 km x 1 km scale were used to generate a proportion of emissions for the major roads (motorway, primary and trunk roads) from minor roads.
- The contributions of emissions by vehicle type across all modelled major road links (from the results presenting in Section 4).
- These percentages were multiplied by the proportion of NAEI emissions from major roads to give an estimate of the percentage of total emissions across the City of Oxford for each vehicle type.


As the "major road" component incorporates tailpipe and non-tailpipe (road abrasion and brake and tyre wear) emissions, non-tailpipe PM_{10} and $PM_{2.5}$ emissions are not distinct in the results presented in Sections 5.1 and 5.2. However, these specific contributions can be seen in comprehensive NAEI emissions pie charts presented in Appendix 5.

The NAEI emissions source apportionment has been carried out for both the whole Oxford Administrative area (results in Section 5.1), and Oxford Inner City (Section 5.2). These boundaries are shown in Figure 5-1, alongside locations of point sources with NO_X, PM_{10} and $PM_{2.5}$ emissions in 2022.

Point sources were included where they were located within the Administrative Area and the Oxford City Centre boundary where identified, a list of sites, operator and emissions are presented in Table 5-2.

²⁴ "Non-Road Mobile Machinery (NRMM) is a broad category. It includes mobile machines and transportable industrial equipment or vehicles, fitted with internal combustion engines but not made to transport goods or passengers on roads." From Mayor of London website Available online: <u>https://www.london.gov.uk/programmes-and-strategies/environment-and-climate-change/pollution-and-air-quality/nrmm</u>
²⁵ A point source is an emission source at a known location, which has grid references and therefore, it can be mapped directly. Detailed emissions data are supplied the NAEI for these industrial and commercial sources.

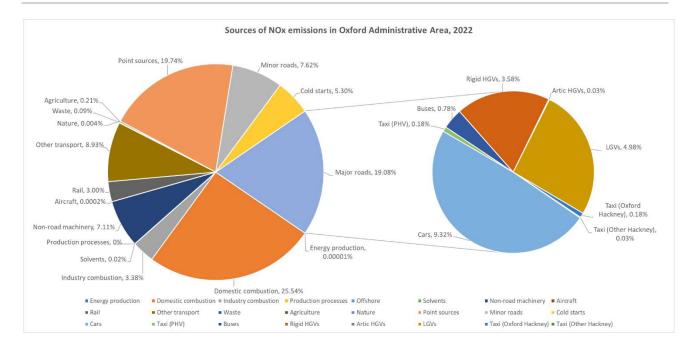
²⁶ Defra UK AIR "Background Mapping data for local authorities – 2018" Available online: <u>https://uk-air.defra.gov.uk/data/laqm-background-maps?year=2018</u>

Figure 5-1 Map of the Oxford Administrative Area boundary and Oxford Inner City cordon and point sources

Table 5-2 List of point sources in Oxford Administrative Area. Sites are denoted with * if they also are located within the Oxford Inner City boundary.

Plant ID	Site	Operator	Sector	NOx Emissions (tonnes)	PM₁₀ Emissions (tonnes)	PM _{2.5} Emissions (tonnes)
3478	Cowley	Rover Group Ltd	Vehicles	N/A	5.83	4.84
8175	Cowley	BMW (UK) Manufacturing Ltd	Vehicles	66.59	0.4	0.4
8356	Oxford*	University of Oxford	Public administration	9	0.09	0.09
8872	Churchill Hospital	Oxford Radcliffe Hospitals NHS Trust	Public administration	38.08	1.53	1.43
8873	John Radcliffe Hospital	Oxford Radcliffe Hospitals NHS Trust	Public administration	24.35	0.26	0.25

5.1 OXFORD ADMINISTRATIVE AREA


In the following pie charts, the NAEI sectors in Table 5-1 are represented in the larger pie charts on the left. The smaller pie charts on the right show source apportionment of the major roads (motorway, primary and trunk road emissions), as well as non-exhaust emissions from road abrasion and brake and tyre wear. These emissions can be broken down further by vehicle type, as taken from ZEBRA model emission results averaged across the Administrative Area.

There are no NO_x, PM₁₀ or PM_{2.5} emissions from offshore and shipping sources in Oxford Administrative Area, so these are not included in the pie charts below.

Across the whole Administrative Area of Oxford, NO_X emissions are dominated by combined road transport sources (major roads, minor roads and cold starts), domestic combustion and point sources. PM₁₀ emissions are dominated by production processes, and PM_{2.5} emissions are dominated by domestic combustion and combined road transport sources.

Road transport sources (major roads, minor roads and cold starts) comprise a combined 32% of NO_X emissions in comparison to around 15% of PM_{10} and 17% of $PM_{2.5}$ emissions in Oxford Administrative Area. Domestic combustion comprises approximately 26% of NO_X emissions, 18% of PM_{10} emissions and 35% of $PM_{2.5}$ emissions. Figure 5-5 breaks down domestic combustion further for $PM_{2.5}$, which shows that in Oxford Administrative Area, the domestic combustion contributions break down to approximately 25% from Wood, 5% each for commercial heating and domestic "other", and 0.5% from smokeless solid fuel.

Other prominent sources across Oxford Administrative Area are production processes, which contribute to nearly half of PM_{10} emissions, but only 10% of $PM_{2.5}$ emissions, and contribute no NO_X emissions; and Point Sources, which contribute to approximately 20% of NO_X emissions, but only 5% of PM_{10} and 9% of $PM_{2.5}$ emissions.

Figure 5-2 Source apportionment of NAEI sources of NO_X, and road transport, in Oxford Administrative Area

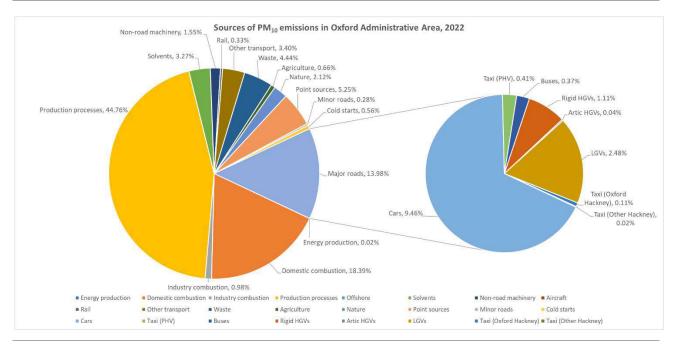
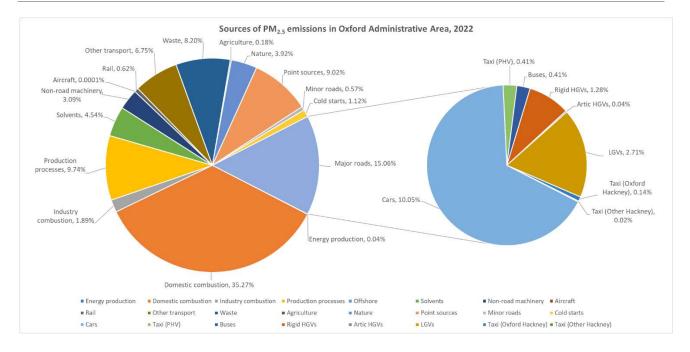
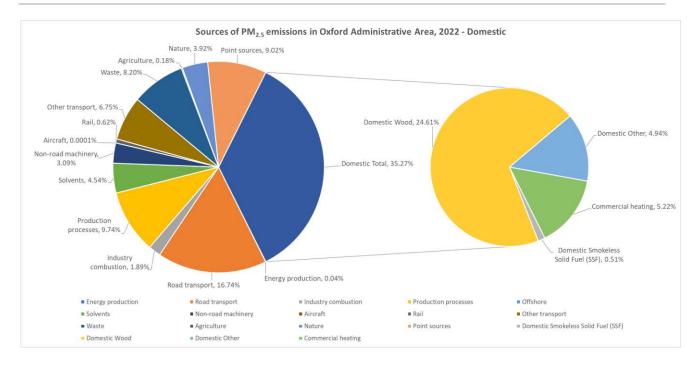




Figure 5-4 Source apportionment of NAEI sources of PM_{2.5} and road transport, in Oxford Administrative Area

Figure 5-5 Source apportionment of NAEI sources of $PM_{2.5}$ including domestic combustion breakdown, in Oxford Administrative Area

5.2 OXFORD INNER CITY

In the following pie charts, source apportionment is presented for Oxford Inner City, as shown in Figure 5-1. Again, the NAEI sectors in Table 5-1 are represented in the larger pie charts on the left, and the smaller pie charts on the right show source apportionment of the major roads (motorway, primary and trunk road emissions). As well as exhaust/tailpipe emissions, the major road component also include emissions from road abrasion and brake and tyre wear. Major road emissions can be broken down further by vehicle type, as taken from ZEBRA model emission results averaged across the Inner City area.

There are no NO_X, PM_{10} or $PM_{2.5}$ emissions from aircraft, offshore and shipping in Oxford Inner City, so these are not included in the pie charts below.

In the Inner City, NO_X emissions are dominated by domestic combustion, PM_{10} emissions are dominated by production processes, and $PM_{2.5}$ emissions are dominated by domestic combustion, production processes, other transport (including inland waterways and military aircraft), and combined road transport sources.

Road transport (major roads, minor roads and cold starts) sources comprise a combined 18% of NO_x emissions across the Inner City area (compared to 32% across the whole Oxford Administrative Area). For PM₁₀, combined road transport sources comprise a combined 9% of emissions across the Inner City area (compared to 15% across the whole Oxford Administrative Area). For PM_{2.5}, combined road transport sources comprise a combined 12% of emissions across the Inner City area (compared to 17% across the whole Oxford Administrative Area). For PM_{2.5}, combined road transport sources comprise a combined 12% of emissions across the Inner City area (compared to 17% across the whole Oxford Administrative Area).

Domestic combustion comprises much higher proportion of NOx emissions in the Inner City (49%) than the Administrative Area (26%). Conversely for PM_{10} and $PM_{2.5}$, domestic combustion comprises lower (by about 3%) proportions of emissions in the Inner City compared to the Administrative Area. Figure 5-9 breaks down domestic combustion further for $PM_{2.5}$, which shows that in the Inner City the domestic combustion contributions are dominated by commercial heating (rather than by wood across the whole Administrative Area), breaking down to approximately 20% from commercial, 10% from wood, 2% for domestic "other", and 0.15% from smokeless solid fuel.

Similarly to the Administrative Area, production process dominate PM_{10} emissions comprising 56% (increased proportion from the Administrative Area of 45%), though only 15% of $PM_{2.5}$ (but increased from the Administrative Area of 10%) and again, no emissions to NOx as NO₂.

As mentioned, other transport (including inland waterways and military aircraft) is among the key sources contributing to $PM_{2.5}$ emissions in the Inner City. Other transport comprises 12% of NO_X, 6% of PM_{10} and 14% of $PM_{2.5}$ in the Inner City, which is increased from the other transport contributions averages across the whole Administrative Area (9% of NO_X, 3% of PM_{10} and 7% of $PM_{2.5}$ respectively).

The contribution of point sources to NOx emissions is reduced in the Inner City to 8% (from 20% across the Administrative Area). This is to be expected given the location of point sources - Figure 5-1 shows only one point source within the Inner City cordon.

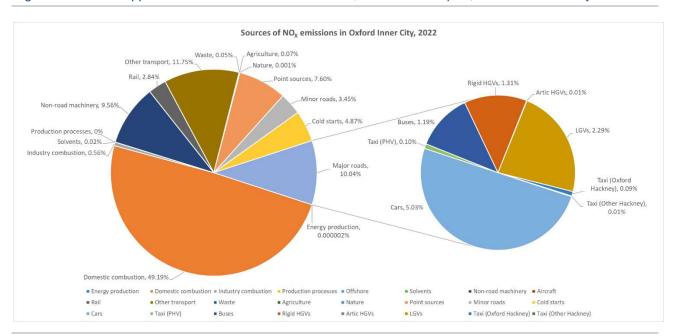
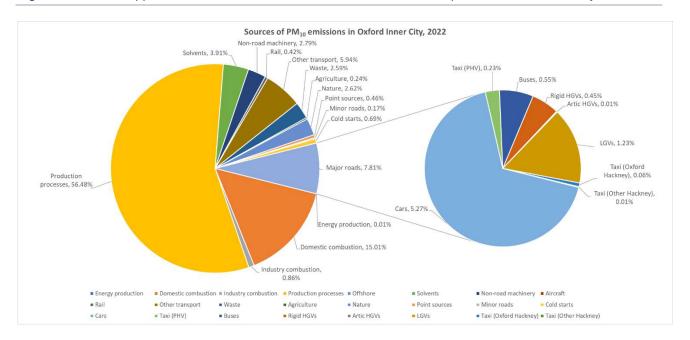



Figure 5-6 Source apportionment of NAEI sources of NO_X, and road transport, in Oxford Inner City.

Figure 5-7 Source apportionment of NAEI sources of PM₁₀ and road transport, in Oxford Inner City.

Figure 5-8 Source apportionment of NAEI sources of PM_{2.5} and road transport, in Oxford Inner City.

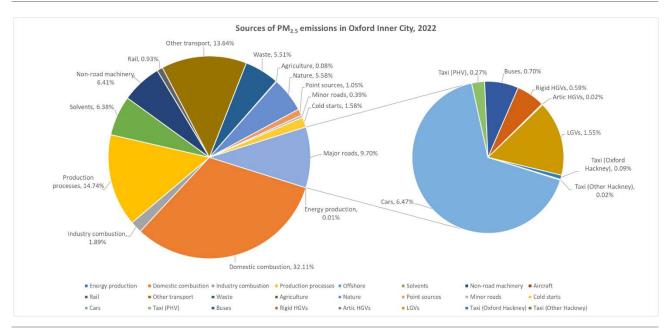
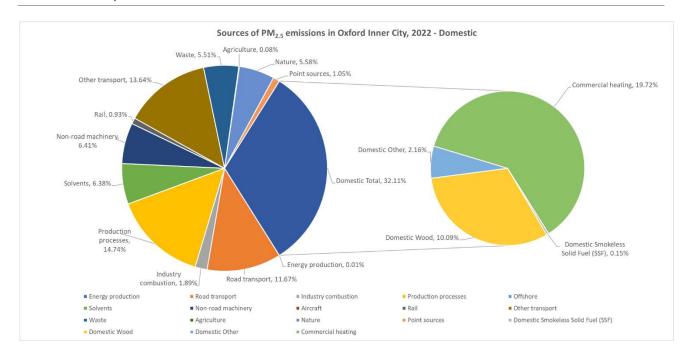



Figure 5-9 Source apportionment of NAEI sources of PM_{2.5} including domestic combustion breakdown, in Oxford Inner City

6. REQUIRED REDUCTION IN EMISSIONS

6.1 REQUIRED REDUCTIONS USING 2022 MONITORING DATA

The 2022 annual mean monitoring data is the latest available year which is not impacted by the Botley Road closure. Table 6-1 presents a list of monitoring sites which are in exceedance of the national AQO for annual mean NO₂ (40 μ g/m³) in 2022, and the required reduction in road emissions that would be needed to achieve compliance. Table 6-2 represents a list of monitoring sites which are in exceedance of the OCC local annual mean NO₂ target (30 μ g/m³ to be achieved by 2025,) in 2022, and the required reductions in emissions to achieve the target.

Both the AQO for annual mean NO₂, and OCC's target for annual mean NO₂, are only applicable to locations of relevant human exposure. Therefore, diffusion tubes which are not at locations of relevant human exposure are not included in this analysis. Table 6-2 shows that there was only one measured exceedance of the annual mean NO₂ AQO in 2022, at DT55 St Clements. An 11% reduction in road NO_x emissions would be required to achieve compliance with the annual mean NO₂ AQO at DT55 in St Clements/ The Plain. Table 6-2 shows that the largest required reduction in road NO_x emissions to achieve OCC's annual mean NO₂ target is 44% at DT55 in St Clements/ The Plain.

Table 6-1 NO₂ concentrations measured within The City of Oxford AQMA and the required NO_X emissions from road traffic required to achieve the local annual mean NO₂ target of 40 μ g/m³.

Code	Location NO ₂ measured in 2022 (µg/m³)		NOx background (μg/m³)	Roadside NO _x from NO ₂ calculator (µg/m ³)	Road NO _X to achieve compliance with the AQO, (µg/m ³)	Road NOx reduction required, (µg/m ³)	Road NOx reduction required, %
DT55	St Clements	43	15.5	66.39	59.35	7.0	11%

Table 6-2 NO₂ concentrations measured in 2022 within The City of Oxford AQMA and the required NO_X emissions from road traffic required to achieve the local annual mean NO₂ target of 30 μ g/m³.

Code	Location	NO₂ measured in 2022 (μg/m³)	NOx background (μg/m³)	Roadside NO _x from NO ₂ calculator (µg/m ³)	Road NO _X to achieve compliance with OCC target, (µg/m ³)	Road NOx reduction required, (µg/m ³)	Road NOx reduction required, %
CM1	AURN Oxford Centre	33	19.4	39.4	33	6.4	16%
DT26	Cuttleslowe 3 Summers Place	32	12.5	44.7	40.4	4.3	10%
DT39	St Aldate's	33	17.1	41.8	35.4	6.4	15%
DT45	Worcester St.	31	19.0	35.6	33.5	2.1	6%
DT51	50 High St.	31	16.1	38.7	36.6	2.1	5%
DT52	Longwall St.	32	15.9	41.1	36.8	4.3	10%
DT55	St Clements	43	15.5	66.4	37.2	29.2	44%
DT56	High St	35	16.9	46.5	35.7	10.8	23%
DT77	St Clements 2	35	15.4	48.1	37.3	10.8	22%
DT80	Holloway Road	34	17.0	44.2	35.6	8.6	19%

6.2 REQUIRED REDUCTIONS USING 2023 MONITORING DATA

Although the Botley Road closures will have impacted some of the monitoring results in 2023, it is likely that it will not have impacted all locations in the AQMA.

A table of required reductions in emissions to achieve compliance with the national AQO for NO₂ is not needed in this assessment against 2023 data, because in 2023 there were no exceedances to the AQO in all the areas of the city considered of relevant exposure.

Table 6-3 presents a list of monitoring sites which were in exceedance of the OCC local annual mean NO_2 target of 30 µg/m³ in 2023, and the required reduction in emissions to achieve compliance with the target. This assessment has been carried out using the latest available 2023 monitoring data is presented in, applying NO_X background contributions from the 2022 baseline. The largest required reduction of road NO_X emissions is 32% at DT55 in St Clements/ The Plain.

Table 6-3 NO₂ concentrations measured in 2023 within The City of Oxford AQMA and the required NO_X emissions from road traffic required to achieve the local annual mean NO₂ target of 30 μ g/m³.

Code	Location	NO ₂ measured in 2023 (µg/m ³)	NOx background in 2022 (µg/m³)	Roadside NO _x from NO ₂ calculator (µg/m ³)	Road NO _x to achieve compliance, (µg/m ³)	Road NOx reduction required, (µg/m ³)	Road NO _x reduction required, %
CM1	AURN Oxford Centre	31	19.4	35.1	33.0	2.1	6%
DT39	St Aldate's	32	17.1	39.7	35.4	4.3	11%
DT55	St Clements	38	15.5	54.8	37.2	17.5	32%
DT56	High Street	31	16.9	37.8	35.7	2.1	6%
DT77	St Clements 2	34	15.4	45.9	37.3	8.6	19%
DT80	Holloway Road	31	17.0	37.7	35.6	2.1	6%

Monitoring data for 2024 is expected to show further reductions in NO_2 concentrations across Oxford, reflecting the positive impacts of the ZEBRA scheme, and achieving further reductions of NO_X levels in all of the monitoring locations in Table 6-3.

7. CONCLUSIONS

In 2022, there was only one location of relevant human exposure which was in exceedance of the annual mean NO₂ AQO in Oxford – diffusion tube location DT55. An 11% reduction in road NO_x emissions would be required to achieve compliance with the AQO at this location. In their AQAP, OCC have established a local annual mean NO₂ target of 30 μ g/m³ to be achieved by 2025. The largest required reduction in emissions to achieve compliance with OCC's local annual mean NO₂ target at any one site of relevant human exposure is 44%.

In 2023 the Oxford LAQM monitoring network showed compliance with all air quality objectives (AQOs) for NO₂, PM₁₀ and PM_{2.5}, for the first time²⁷ since declaration of the first Oxford AQMAs. However, these results may be impacted by the Botley Road closure and so may not be representative of normal conditions. Based on the 2023 monitoring results, the largest required reduction in emissions to achieve compliance with the OCC local annual mean NO₂ target at any one site of relevant human exposure is 32% (DT55). This figure is expected to reduce when 2024 monitoring data is published, reflecting the impact of the roll-out of ZEBRA buses in 2024 on concentrations.

Detailed source apportionment has been carried out at three hotspot locations (road transport source apportionment presented in Section 4, and background source apportionment for these locations available in Appendix 3). These locations were determined by a detailed review as part of the 2020 source apportionment study. The same locations have been selected again for this study, because:

- 1. These locations continue to be hotspot areas, and therefore up to date knowledge of sources is needed to aid action planning for remaining areas of elevated concentrations.
- 2. It is useful to assess how impacts from different sources have changed over time at these locations.

These locations, and the diffusion tube most representative of the location are as follows:

- St Clement's / The Plain (relevant diffusion tubes DT55 and TF19)
- Worcester Street (relevant diffusion tube DT45)
- Botley Road (relevant diffusion tube DT35)

The results of the source apportionment study were presented in terms of percentage contribution to modelled road emissions, as well as modelled concentrations of NO_X , NO_2 PM_{10} and $PM_{2.5}$, and measured NO_2 concentrations at relevant diffusion tubes in 2022. The source apportionment results presented have incorporated the ZEBRA buses which were introduced to the Oxford fleet in January 2025, and assumes that 69% of buses in the fleet are fully electric buses.

The key trends observed across all three locations are:

- Cars have the greatest contributions to NO_X, PM₁₀ and PM_{2.5} emissions at all locations.
- Diesel cars contribute a higher proportion of NO_X emissions than petrol cars at all locations.
- PM₁₀ and PM_{2.5} emissions have fairly equal contributions from petrol and diesel cars, with slightly higher contributions from petrol.
- LGVs are the next greatest contributors, followed by HGVs, at all locations.
- Rigid HGVs contributed significantly more NO_X, PM₁₀ and PM_{2.5} emissions than articulated HGVs.
- Private hire vehicle (PHV) taxis contributed more to emissions from taxis than Oxford or other Hackney Carriage vehicles.
- Diesel taxis (both PHVs and HCVs) contributed to more emissions than petrol taxis.
- For PM₁₀ and PM_{2.5} the background concentrations are considerably more than the road contribution. This is not the case for NO_x.

²⁷ In 2020, compliance was achieved at all of the monitoring sites, but this was due to the effect of COVID related restrictions reducing traffic in the city.

Along **St Clement's Street / The Plain**, at diffusion tube DT55, emissions are dominated by cars, accounting for approximately 60% of NO_x road emissions (51% of which are attributed to diesel cars), and approximately 74% of PM₁₀ and PM_{2.5} road emissions (37 – 39% from petrol cars, 31 – 33% from diesel). These are slightly higher than the results for Worcester Street and Botley Road for the ZEBRA scenario, which is to be expected, as a reduced contribution from buses to emissions will result in an increased contribution from other vehicle types. LGVs are now the next-largest contributor (where previously in the baseline scenario it was buses) at 17% for NO_x road emissions, and 11% for PM₁₀ and PM_{2.5} road emissions. This is followed by rigid HGVs being the next greatest source for NO_x road emissions (11%) and buses being the next greatest source for PM₁₀ and PM_{2.5}. St Clements / The Plain shows the greatest impact of the ZEBRA bus scheme at any of the assessed locations, with a reduction of 5.82 μ g/m³ in NO₂ concentrations as a result of a 14% reduction in NO_x road emissions. Total modelled PM₁₀ concentrations are reduced by 4% and PM_{2.5} by 3% compared to the baseline.

On **Worcester Street**, at diffusion tube DT45, road emissions are also dominated by cars, accounting for 50% of the NO_x, 68% of the PM₁₀, and 67% of PM_{2.5} road emissions. Diesel cars account for 42% of the total 50% of NO_x road emissions from cars, and for PM₁₀ and PM_{2.5}, 33 - 36% of road emissions were from petrol cars and 28 – 30% were from diesel cars. The next greatest contributing vehicle type to road emissions on Worcester Street is LGVs comprising 29% of NO_x road emissions, and 21% of PM₁₀ and PM_{2.5} read emissions respectively. Worcester Street shows the least improvement of all three locations as a result of the ZEBRA buses being introduced, which is to be expected given the low contribution of buses to emissions in the baseline scenario. The ZEBRA scheme reduces total NO₂ concentrations by 2%, and PM₁₀ and PM_{2.5} concentrations by 1% compared to the baseline.

On **Botley Road** at diffusion tube DT35, cars account for 53% of road NO_X emissions, 29% of PM₁₀ road emissions and 30% of PM_{2.5} road emissions. These contributions are slightly higher in the ZEBRA scenario than the baseline, and the results are similar to St Clements/ The Plain DT55 and Worcester Street. For NO_X road emissions at Worcester Street, diesel cars accounted for 44% of the total 53% of NO_X road emissions from cars. For PM₁₀ and PM_{2.5}, 34 - 37% of road emissions were from petrol cars and 29 – 30% were from diesel cars. The next greatest contributing vehicle type to emissions on Worcester Street were LGVs comprising 27% of NO_X road emissions, and 18% of PM₁₀ and PM_{2.5} road emissions. At Botley Road, the ZEBRA scheme reduces total NO₂ concentrations by 8%, and PM₁₀ and PM_{2.5} concentrations by 1% compared to the baseline.

Source apportionment was also carried out for all emissions types, using the 2022 NAEI emissions data²⁸. This was carried out both for the whole Oxford Administrative Area, and for the Inner City. Source apportionment of emissions at this scale gives important insight into the most significant sources of pollutant across Oxford and Oxford Inner City.

Across the whole **Administrative Area of Oxford**, NO_X emissions are dominated by combined road transport sources (32% total of major roads, minor roads and cold starts), domestic combustion (26%) and point sources (20%). PM₁₀ emissions are dominated by production processes (45%), and PM_{2.5} emissions are dominated by domestic combustion (35%) and combined road transport sources (17%).

In the **Inner City**, NO_x emissions are dominated by domestic combustion (49%), PM₁₀ emissions are dominated by production processes (56%), and PM_{2.5} emissions are dominated by domestic combustion (32%), production processes (15%), other transport (including inland waterways and military aircraft) (14%), and combined road transport sources (12%).

²⁸ NAEI UK Emissions Interactive Map. Available online: <u>https://naei.energysecurity.gov.uk/emissionsapp/</u>

APPENDIX 1. AIR DISPERSION MODEL VERIFICATION AND ADJUSTMENT

Verification of the model involves comparison of the modelled results with any local monitoring data at relevant locations. This helps to identify how the model is performing and the appropriate model adjustments that should be applied. The verification process involves checking and refining the model input data to try and reduce uncertainties and produce model outputs that are in better agreement with the monitoring results. This can be followed by adjustment of the modelled results if required. The LAQM.TG(22) guidance recommends making the adjustment to the road contribution of the pollutant only and not the background concentration these are combined with.

The approach outlined in LAQM.TG (22) section 7.55 - 7.578 (also in Box 7.17 and 7.18) has been used in this case. To verify the model, the modelled annual mean road NO_X concentrations (summated to background NO_X concentrations) were compared with concentrations measured at the various monitoring sites for the year 2022.

The model output of road NO_x (the total NO_x originating from road traffic) was compared with measured road NO_x, where the measured road NO_x contribution is calculated as the difference between the total measured NO_x and the background NO_x value sampled at each site. Total measured NO_x for each monitoring site was calculated from the measured NO₂ concentration using Version 8.1 of the Defra NO_x/NO₂ calculator available from the LAQM website²⁹. Background NO_x values for 2022 were obtained from the 2018 reference year background maps available on the LAQM website.

The gradient of the best-fit line for the modelled road NO_x contribution compared with measured road NO_x contribution was then determined using linear regression and used as a global/domain wide road NO_x adjustment factor. This factor was then applied to the modelled road NO_x concentration at each individual modelled receptor point to provide adjusted modelled road NO_x concentrations. A linear regression plot comparing modelled and monitored road NO_x concentrations before and after adjustment was produced. A primary NO_x adjustment factor of **2.3994** based on model verification using all of the included 2022 NO₂ measurements was applied to all modelled road NO_x data prior to calculating an NO₂ annual mean.

Following this, four sites were removed from the validation. One site was removed due to being a significant outlier: TF19 (previously discussed in section 3.1 of this report), and three sites were removed due to modelled road NO_X contribution being below zero: LT2, LT11 and TF1.

Following their removal, an updated Road NOx adjustment factor of **2.3366** was applied to the modelled road NO_x concentration at each individual modelled receptor point to provide adjusted modelled road NO_x concentrations, and a new linear regression plot comparing modelled and monitored road NO_x concentrations before and after adjustment was produced.

The total annual mean NO₂ concentrations were then determined at points within the model domain using the NOx/NO₂ calculator to combine background and adjusted road contribution concentrations. For this step of the process, regional concentrations of ozone, oxides of nitrogen (NO_x) and nitrogen dioxide (NO₂) were set to those of the local authority where the calibration point was located. The following relationship was determined for conversion of total NO_x concentrations to total NO₂ concentrations:

$(NO_2 \text{ in } \mu g/m^3) = -0.0011 (NOx \text{ in } \mu g/m^3)^2 + 0.5825 (NOx \text{ in } \mu g/m^3) + 3.0955$

To evaluate the model performance and uncertainty, the Root Mean Square Error (RMSE) for the observed vs predicted NO₂ annual mean concentrations was calculated, as detailed in Technical Guidance LAQM.TG (22). The calculated RMSE is presented in Table A1-1. In this case the RMSE was calculated at **4.0491** μ g/m³.

²⁹ DEFRA NOx to NO2 Calculator Available online: <u>https://laqm.defra.gov.uk/air-quality/air-quality-assessment/nox-to-no2-calculator/</u>

Table A-1-1 Modelled and measured NO_2 concentrations for 2022 (baseline model) and calculated RMSE value

Site ID	Location	Measured NO₂ 2022 (μg/m³)	Total Modelled NO₂ (µg/m³)	Difference (µg/m³)
DT2	Weirs Lne./Abingdon Rd. LP1	21.2	24.4	3.2
DT3	LP 52 Abingdon Rd.	27.2	25.1	-2.2
DT4	Boundary Brook Rd/ Iffley Rd	27.1	24.3	-2.8
DT7	Oxford Rd/ Between Towns Rd	29.8	23.3	-6.5
DT8	Oxford Rd(Cowley) LP13	28.8	25.6	-3.2
DT14	Windmill Rd. W	28.5	20.1	-8.4
DT15	London Rd./BHF	17.8	31.2	13.4
DT16	Headley Way/London Rd. LP2	20.6	23.3	2.7
DT18	The Roundway	22.7	19.9	-2.8
DT20	Barton Lane LP2	20.0	19.8	-0.2
DT25	Cuttleslowe Rbout 3 Elsfield Rd.	25.0	27.3	2.3
DT26	Cuttleslowe 3 Summers Place	32.1	33.8	1.7
DT27	Wolvercote 78 Sunderland Ave.	20.2	22.5	2.2
DT28	Wolvercote 51 Sunderland Ave	20.0	22.8	2.9
DT29	Pear Tree P&R N Gateway	20.7	16.8	-3.9
DT30	Osney Lne/Hollybush Row	19.9	22.4	2.4
DT31	Beckett St.	22.9	25.2	2.3
DT32	Royal Oxford Hotel	24.8	23.3	-1.5
DT33	Botley RD/ Mill St	18.0	22.3	4.3
DT35	Botley Rd /Hillview Rd	23.7	26.6	2.9
DT36	Botley Rd N (Prestwich Place)	16.0	20.3	4.4
DT39	St Aldate's	32.9	29.6	-3.3
DT40	Queen St.	21.7	17.9	-3.7
DT41	Bonn Square	21.5	17.8	-3.7
DT42	New Rd.	29.0	19.4	-9.6
DT43	Park End St.	26.6	22.7	-3.8
DT44	Hythe Bridge St.	22.6	22.7	0.1
DT45	Worcester St.	30.8	36.8	6.0
DT46	Beaumont St.	21.5	32.4	10.9
DT40	George St. / Magdalen St.	22.7	20.7	-2.0
DT48	George St.	24.3	22.7	-2.0
DT49	Cornmarket St.	18.3	15.3	-3.0
DT50	High St. / Turl St.	23.3	18.7	-3.0
DT51	50 High St.	31.4	36.6	5.2
DT52	Longwall St.	31.8	34.3	2.5
DT52	Magdalen Bridge	17.3	25.9	8.6
DT54	York Place	18.9	20.8	1.9
DT54	St Clements	43.1	44.7	1.9
			33.7	
DT56	High St.	34.9		-1.2
DT57	Speedwell St. / St. Aldate's	29.2	35.4	6.2

Site ID	Location	Measured NO₂ 2022 (µg/m³)	Total Modelled NO₂ (μg/m³)	Difference (µg/m³)
DT58	Folly Bridge	23.1	24.1	1.0
DT59	Thames St.	19.5	21.0	1.4
DT60	New Butterwyke P./ Thames St.	22.7	20.3	-2.4
DT61	Friars Wharf	14.0	21.0	7.0
DT64	Thames St. / Oxpens Rd.	15.8	23.1	7.3
DT65	Speedwell St. / Littlegate	22.3	20.5	-1.8
DT68	Norfolk St.	21.7	16.2	-5.5
DT69	Paradise Square	18.2	14.9	-3.3
DT70	Castle St.	21.5	16.8	-4.8
DT71	BP City Motors	26.7	30.3	3.6
DT72	Cowley Rd./ James Street	26.6	28.4	1.9
DT73	Walton Street LP18	18.1	18.6	0.4
DT76	St Gilles	21.7	20.4	-1.3
DT77	St Clements 2	34.8	40.4	5.6
DT79	Old Abingdon Rd.	18.2	17.7	-0.5
DT80	Hollow way Road	33.8	22.9	-10.9
DT81	Cowley Rd/ Union Street	18.6	24.7	6.1
DT82	Summertown Parade	17.2	16.2	-1.1
DT83	A44 Woodstock Rd.	30.1	34.2	4.1
DT84	226 Botley Rd.	18.2	25.6	7.3
DT85	St Clements 3	30.4	36.9	6.5
DT86	72 Blackbird Leys	16.4	14.1	-2.3
DT87	New Inn Hall St	15.3	15.2	-0.1
DT88	St Michaels St	14.2	15.9	1.7
DT89	Turl St/Market St	14.5	14.9	0.4
DT90	Rose Hill (Ashhurst Way)	18.5	14.9	-3.6
DT91	Garsington Rd (Premier Place)	27.7	28.3	0.6
DT92	BB Leys (Cuddesdon Way)	15.6	14.9	-0.7
DT93	Marston Ferry Rd	12.7	17.6	4.8
DT94	Broad St LP6	14.4	15.5	1.0
DT95	Broad S -Lbay	14.2	15.0	0.8
LT1	26 Prince St	13.0	13.9	0.8
LT3	47 Quarry Rd	12.9	14.0	1.1
LT4	138-146 Morrell Av	13.2	16.1	2.9
LT5	189 Divinity Rd	12.4	12.4	0.0
LT7	126 The slade	21.9	20.5	-1.4
LT9	4 Quarry school	12.8	15.1	2.3
LT10	23 Gladstone Rd	11.8	13.7	1.9
LT12	Ruskin Hall	16.4	15.9	-0.5
LT13	21 Latimer Rd	12.4	13.8	1.3
LT14	94 Howard St	12.6	12.3	-0.3
LT15	96 Valentia Rd	12.1	12.9	0.8
LT16	103-139 Hurst St	13.2	12.5	-0.8

Site ID	Location	Measured NO₂ 2022 (µg/m³)	Total Modelled NO₂ (μg/m³)	Difference (µg/m³)
TF2	Oxey Mead Lake 2	12.9	18.0	5.2
TF3	Oxey Mead Lake 3	25.4	25.1	-0.3
TF4	Wolvercote Village	12.4	13.6	1.2
TF5	Wolvercote Primary School	14.2	14.6	0.4
TF6	306 Woodstock Road	15.1	20.1	5.0
TF7	339 Banbury Road	23.4	18.9	-4.5
TF8	191 Woodstock Road	19.7	20.5	0.8
TF9	48 Woodstock Road	20.5	20.2	-0.3
TF10	99 Banbury Road	19.4	16.9	-2.5
TF11	9 S. Park Road	17.1	20.0	2.9
TF12	15 Banbury Road	16.8	20.8	4.0
TF13	Walton Street 76	19.9	18.3	-1.6
TF14	69 Kingston Road	14.7	16.6	1.9
TF15	Park End Street	35.6	27.7	-7.9
TF16	St Aldates 61	27.9	27.0	-0.9
TF17	23 Iffley Rd/Stanley Rd	25.7	25.0	-0.7
TF18	143 Morrell Avenue	16.0	16.1	0.1
TF20	Marston Rd/St Michaels Primary	16.2	15.7	-0.5
TF21	189 Headley Way	21.7	15.3	-6.5
TF22	255 London Rd/Gladstone Rd	25.0	20.5	-4.5
TF23	JR Hospital	22.4	14.0	-8.4
TF24	Marston Ferry Rd/Cherwell Drive	15.6	16.5	0.9
TF25	39 Marsh Lane	17.4	22.0	4.5
TF26	Northway/Cutteslowe Park	23.0	24.4	1.4
TF27	Northern Bypass/Phillips Tyres	41.8	26.1	-15.7
TF28	Horspath Driftway/Agwar Stone Rd	21.7	26.4	4.7
TF29	109 Old Road	14.7	15.7	1.0
TF30	99 Oliver Road	34.5	30.0	-4.4
TF31	Brasenose Farm/Eastern Bypass	42.8	35.5	-7.3
TF32	22 Garsington Road	20.2	24.9	4.7
TF33	119 Barns Road	17.5	18.2	0.7
TF34	Oxford Road/Newmans Road	34.9	24.4	-10.4
TF35	67 Southern Bypass Road	56.5	34.7	-21.8
TF36	Wolvercote Meadows 1	35.7	37.2	1.5
TF37	Wolvercote Meadows 2	42.1	42.8	0.7
			RMSE (all sites in this table)	4.0491

APPENDIX 2. TAXI EMISSIONS BY FUEL TYPE

These tables provide a breakdown of taxi emissions as a percent of the total contribution from taxis to emissions. As a result of the total contributions from taxis being so small, the proportions by taxi type and fuel type remain largely unchanged between the baseline model and the ZEBRA scenario model, and also are relatively unchanged between the three source apportionment locations.

Table A-2-1 Breakdown of 2022 baseline and ZEBRA modelled taxi emissions at diffusion tube DT55 in St Clement's / The Plain, by taxi type and fuel type.

			Private	Hire Vehic	les (PHVs)		Oxfo	rd Hack	ney Carria	iges (HC)	Vs)	Oth	er Hack	ney Carria	iges (HC\	/s)
DT55	Total PHVs (of Total Taxi Fleet)	Petrol Car	Diesel Car	Petrol Hybrid Car	Petrol Plugin Hybrid Car	Diesel Hybrid Car	Electric Car	Total Oxford HCVs (of Total Taxi Fleet)	Petrol Taxis	Petrol Hybrid Taxis	Diesel Taxis	Electric Taxi	Total Other HCVs (of Total Taxi Fleet)	Petrol Taxis	Petrol Hybrid Taxis	Diesel Taxis	Electric Taxi
Baselir	ne																
NOx	48%	1%	46%	1%	0%	0%	0%	45%	0%	0%	45%	0%	7%	0%	0%	7%	0%
PM ₁₀	76%	2%	66%	5%	2%	0%	1%	21%	0%	5%	16%	0%	4%	0%	1%	3%	0%
PM _{2.5}	72%	2%	62%	5%	2%	0%	1%	24%	0%	5%	19%	0%	4%	0%	1%	4%	0%
ZEBRA	A model			L	L		•	L			•	•			•		L
NOx	48%	1%	46%	1%	0%	0%	0%	45%	0%	0%	45%	0%	7%	0%	0%	7%	0%
PM ₁₀	76%	2%	66%	5%	2%	0%	1%	21%	0%	5%	16%	0%	4%	0%	1%	3%	0%
PM _{2.5}	72%	2%	62%	5%	2%	0%	1%	24%	0%	5%	19%	0%	4%	0%	1%	4%	0%

Table A-2-2 Breakdown of 2022 baseline and ZEBRA modelled taxi emissions at diffusion tube DT45 on Worcester Street, by taxi type and fuel type.

			Private I	Hire Vehio	cles (PHVs	;)		Oxfo	ord Hack	ney Carria	iges (HC	Vs)	Other Hackney Carriages (HCVs)				
DT45	Total PHVs (of Total Taxi Fleet)	Petrol Car	Diesel Car	Petrol Hybrid Car	Petrol Plugin Hybrid Car	Diesel Hybrid Car	Electric Car	Total Oxford HCVs (of Total Taxi Fleet)	Petrol Taxis	Petrol Hybrid Taxis	Diesel Taxis	Electric Taxi	Total Other HCVs (of Total Taxi Fleet)	Petrol Taxis	Petrol Hybrid Taxis	Diesel Taxis	Electric Taxi
Baselii	ne																
NOx	48%	1%	46%	1%	0%	0%	0%	45%	0%	0%	45%	0%	7%	0%	0%	7%	0%
PM 10	75%	2%	65%	5%	2%	0%	1%	21%	0%	5%	16%	0%	4%	0%	1%	3%	0%
PM _{2.5}	71%	2%	62%	5%	2%	0%	1%	24%	0%	5%	20%	0%	4%	0%	1%	4%	0%
ZEBRA	A model																
NOx	48%	1%	46%	1%	0%	0%	0%	45%	0%	0%	45%	0%	7%	0%	0%	7%	0%
PM 10	75%	2%	65%	5%	2%	0%	1%	21%	0%	5%	16%	0%	4%	0%	1%	3%	0%
PM _{2.5}	71%	2%	62%	5%	2%	0%	1%	24%	0%	5%	20%	0%	4%	0%	1%	4%	0%

Table A-2-3 Breakdown of 2022 baseline and ZEBRA modelled taxi emissions at diffusion tube DT35 on Botley Road (DT35), by taxi type and fuel type.

			Private I	Hire Vehic	les (PHVs)		Oxfo	ord Hack	ney Carria	iges (HC)	Vs)	Other Hackney Carriages (HCVs)				
DT35	Total PHVs (of Total Taxi Fleet)	Petrol Car	Diesel Car	Petrol Hybrid Car	Petrol Plugin Hybrid Car	Diesel Hybrid Car	Electric Car	Total Oxford HCVs (of Total Taxi Fleet)	Petrol Taxis	Petrol Hybrid Taxis	Diesel Taxis	Electric Taxi	Total Other HCVs (of Total Taxi Fleet)	Petrol Taxis	Petrol Hybrid Taxis	Diesel Taxis	Electric Taxi
Baselir	ne																
NOx	48%	1%	46%	1%	0%	0%	0%	45%	0%	0%	45%	0%	7%	0%	0%	7%	0%
PM 10	76%	2%	66%	5%	2%	0%	1%	21%	0%	5%	16%	0%	4%	0%	1%	3%	0%
PM _{2.5}	72%	2%	62%	5%	2%	0%	1%	24%	0%	5%	19%	0%	4%	0%	1%	4%	0%
ZEBRA	A model																
NOx	47%	1%	45%	1%	0%	0%	0%	46%	0%	0%	46%	0%	7%	0%	0%	7%	0%
PM 10	76%	2%	66%	5%	2%	0%	1%	20%	0%	5%	15%	0%	3%	0%	1%	3%	0%
PM _{2.5}	73%	2%	63%	5%	2%	0%	1%	23%	0%	5%	18%	0%	4%	0%	1%	3%	0%

APPENDIX 3. BACKGROUND APPORTIONMENT

MAPS

The point sampled background concentrations at each of the study locations have been apportioned into the contributions from each source.

The Defra background maps³⁰ were downloaded at 1 km x 1 km resolution for baseline year 2022 for NO_x as NO₂, PM₁₀ and PM_{2.5}, using the latest available reference year maps at the time of the assessment (which was reference year 2018 at the time of the assessment). RapidAIR interpolates these concentrations to a 1 m x 1 m grid to match the resolution of the modelled road contribution output. The background concentrations at the exact location of each diffusion tube have then been extracted, to provide the most accurate estimate of the background concentration at that site.

The 'Sources In' column therefore accounts for all pollution sources within the 1 km x 1 km grid square (as well as a number of other sources, see the note beneath each table) and the remaining background pollution comes from outside the 1 km x 1 km grid square the diffusion tube is located in.

Some sources are not included in the background concentrations; at the time of download their relative contributions were removed because they are already included in our road source modelling.

- For NO_x, these are: motorway, trunk, primary and minor roads.
- For PM₁₀ and PM_{2.5} these are: motorway, trunk, and primary roads, tyre and brake wear, and road abrasion.

The remaining background sources / sectors not included in our road modelling have been apportioned in terms of percentage of the background concentration as well as the associated pollutant concentration in $\mu g/m^3$.

The definitions of each source / sector are provided in Table 5-1.

³⁰ DEFRA Background Mapping data for local authorities reference year 2018 <u>https://uk-air.defra.gov.uk/data/laqm-background-maps?year=2018</u>

Table A-3-1 Source apportionment of background NO_X concentrations (%) at hotspots in 2022

NOx	Minor Road	& Cold Start	Indu	ustry	Dom	estic	Airo	craft	Ra	ail	Ot	her	Point	Dural	Total Int	Total
(%)	In	Out	In	Out	In	Out	In	Out	In	Out	In	Out	Sources	Rural	Total In*	Total
DT55	3%	5%	0%	4%	7%	12%	0%	0%	2%	8%	9%	9%	3%	38%	20%	100%
TF19	7%	5%	0%	4%	12%	12%	0%	0%	0%	7%	1%	9%	3%	40%	20%	100%
DT45	2%	4%	0%	4%	7%	8%	0%	0%	13%	5%	11%	8%	2%	36%	33%	100%
DT35	2%	5%	0%	6%	3%	10%	0%	0%	0%	7%	1%	11%	3%	53%	6%	100%

*Total In includes all In sources as well as Point Sources and Rural

Table A-3-2 Source apportionment of background NO_X concentrations (µg/m³) at hotspots in 2022

NOx	Minor Road	& Cold Start	Indu	istry	Dom	estic	Airo	craft	Ra	ail	Otl	her	Point	Durral	Total lat	
(µg/m³)	In	Out	In	Out	In	Out	In	Out	In	Out	In	Out	Sources	Rural	Total In*	Total BG NOx
DT55	0.5	0.8	0.0	0.6	1.1	2.0	0.0	0.0	0.3	1.4	1.4	1.5	0.4	6.2	3.3	16.2
TF19	1.1	0.8	0.0	0.6	1.9	1.8	0.0	0.0	0.0	1.1	0.2	1.4	0.5	6.2	3.2	15.7
DT45	0.3	0.7	0.0	0.6	1.2	1.5	0.0	0.0	2.3	0.9	1.9	1.5	0.4	6.2	5.7	17.3
DT35	0.3	0.6	0.0	0.7	0.3	1.2	0.0	0.0	0.0	0.8	0.1	1.3	0.3	6.2	0.7	11.7

*Total In includes all In sources as well as Point Sources and Rural

Table A-3-3 Source apportionment of background PM₁₀ concentrations (%) at hotspots in 2022

PM ₁₀	Minor Road	& Cold Start	Indu	istry	Dom	estic	R	ail	Ot	her	Conservations DM	Desidual 8 Calt	Deint Courses	Total Int	Total
(%)	In	Out	In	Out	In	Out	In	Out	In	Out	Secondary PM	Residual & Salt	Point Sources	Total In*	Total
DT55	0%	0%	1%	3%	3%	5%	0%	0%	1%	1%	46%	39%	0%	5%	100%
TF19	0%	0%	2%	3%	7%	6%	0%	0%	0%	1%	44%	36%	0%	9%	100%
DT45	0%	0%	0%	3%	1%	5%	1%	0%	1%	1%	47%	41%	0%	3%	100%
DT35	0%	0%	0%	3%	1%	4%	0%	0%	0%	1%	44%	47%	0%	1%	100%

*Total In includes all In sources as well as Secondary PM, Residual & Salt, and Point Sources

Table A-3-4 Source apportionment of background PM₁₀ concentrations (µg/m³) at hotspots in 2022

PM ₁₀	Minor Road	d & Cold Start	Ind	lustry	Dom	estic	Ra	il	Ot	her	Secondary	Residual	Point	Total	Total BG
(µg/m³)	In	Out	In	Out	In	Out	In	Out	In	Out	PM	& Salt	Sources	ln*	PM ₁₀
DT55	0.0	0.0	0.2	0.5	0.4	0.8	0.0	0.0	0.1	0.1	6.6	5.6	0.1	0.7	14.3
TF19	0.0	0.0	0.3	0.5	1.0	0.9	0.0	0.0	0.0	0.1	6.6	5.3	0.1	1.3	14.8
DT45	0.0	0.0	0.1	0.4	0.1	0.7	0.1	0.0	0.1	0.1	6.6	5.7	0.0	0.4	13.9
DT35	0.0	0.0	0.0	0.4	0.2	0.6	0.0	0.0	0.0	0.1	6.6	6.9	0.0	0.2	14.9

*Total In includes all In sources as well as Secondary PM, Residual & Salt, and Point Sources

Table A-3-5 Source apportionment of background PM_{2.5} concentrations (%) at hotspots in 2022

PM _{2.5}	Minor Road	& Cold Start	Indu	istry	Dom	estic	Ra	ail	Ot	her	. Secondary PM	Residual & Salt	Point Sources	Total In*	Total
(%)	In	Out	In	Out	In	Out	In	Out	In	Out	,, ,, ,				
DT55	0%	0%	0%	2%	4%	8%	0%	0%	1%	1%	59%	24%	1%	5%	100%
TF19	0%	0%	1%	2%	10%	9%	0%	0%	0%	1%	55%	21%	1%	11%	100%
DT45	0%	0%	0%	2%	1%	7%	1%	0%	1%	1%	61%	25%	0%	4%	100%
DT35	0%	0%	0%	2%	2%	6%	0%	0%	0%	1%	58%	30%	0%	2%	100%

*Total In includes all In sources as well as Secondary PM, Residual & Salt, and Point Sources

Table A-3-6 Source apportionment of background PM_{2.5} concentrations (µg/m³) at hotspots in 2022

PM _{2.5}	Minor Road	& Cold Start	Indu	istry	Dom	estic	Ra	ail	Oti	her	Conservations DM	Desidual 8 Calt	Deint Courses	Total lat	
(µg/m³)	In	Out	In	Out	In	Out	In	Out	In	Out	Secondary PM	Residual & Salt	Point Sources	Total In"	Total BG PM _{2.5}
DT55	0.0	0.0	0.0	0.2	0.4	0.8	0.0	0.0	0.1	0.1	5.7	2.3	0.0	0.5	9.7
TF19	0.0	0.0	0.1	0.2	1.0	0.9	0.0	0.0	0.0	0.1	5.7	2.2	0.1	1.1	10.2
DT45	0.0	0.0	0.0	0.2	0.1	0.6	0.1	0.0	0.1	0.1	5.7	2.3	0.0	0.3	9.3
DT35	0.0	0.0	0.0	0.2	0.2	0.6	0.0	0.0	0.0	0.1	5.7	2.9	0.0	0.2	9.8

*Total In includes all In sources as well as Secondary PM, Residual & Salt, and Point Sources

APPENDIX 4. SOURCE APPORTIONMENT OF BASELINE ROAD TRANSPORT EMISSIONS

Table A-4-1, Table A-4-4 and Table A-4-7 show the source apportionment in terms of percentage contribution of the major vehicle types to the total modelled vehicular NO_x, NO₂, PM₁₀ and PM_{2.5} emissions at the three hotspot locations. The percentage emissions are also presented in pie charts (Figure A-4-1, Figure A-4-2, Figure A-4-3 and Figure A-4-4).

Table A-4-2, Table A-4-5 and Table A-4-8 show the source apportionment in terms of the amount of *modelled* NO_X, NO₂, PM₁₀ and PM_{2.5} originating from each of these sources (in µg/m³).

Table A-4-4, Table A-4-6 and Table A-4-9 show the source apportionment in terms of the amount of measured NO₂ attributed to each of these sources (in µg/m³).

ST CLEMENTS/ THE PLAIN

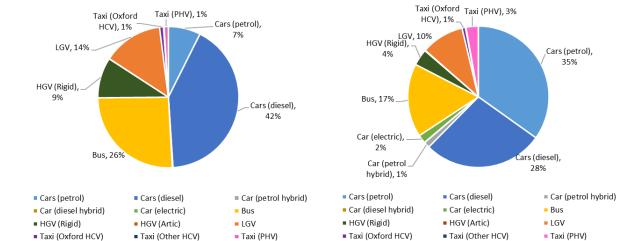
Table A-4-1 Source apportionment for all road transport emissions on St Clement's / The Plain (%) for the baseline fleet, 2022

			Cars								Тахі		
	Cars (petrol)	Cars (diesel)	Car (petrol hybrid)	Car (diesel hybrid)	Car (electric)	Bus	HGV (Rigid)	HGV (Artic)	LGV	Taxi (Oxford HCV)	Taxi (Other HCV)	Taxi (PHV)	Total
DT55 – St	Clements/ The	e Plain Rounda	about										
NOx	7.4%	41.5%	0.1%	0.1%	0.0%	25.7%	9.3%	0.1%	13.8%	0.9%	0.1%	1.0%	100%
PM 10	34.8%	27.6%	1.4%	0.0%	1.9%	16.8%	3.7%	0.1%	9.8%	0.8%	0.1%	2.8%	100%
PM _{2.5}	32.5%	28.9%	1.3%	0.0%	2.0%	17.3%	4.0%	0.1%	10.0%	0.9%	0.2%	2.7%	100%
TF19 – He	adington Hill				•								
NOx	5.4%	30.2%	0.1%	0.0%	0.0%	32.1%	13.5%	0.1%	17.2%	0.7%	0.1%	0.7%	100%
PM 10	28.0%	22.1%	1.1%	0.0%	1.6%	23.8%	6.7%	0.2%	13.5%	0.6%	0.1%	2.3%	100%
PM _{2.5}	25.9%	23.0%	1.1%	0.0%	1.6%	24.4%	7.1%	0.2%	13.6%	0.7%	0.1%	2.1%	100%

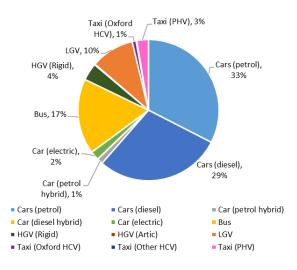
Table A-4-2 Source apportionment for all road transport on modelled concentrations at St Clement's / The Plain (μ g/m³) for the baseline fleet, 2022 (NO₂ concentrations derived from the NOx to NO₂ calculator)

				Cars								Тахі			
	Background	Cars (petrol)	Cars (diesel)	Car (petrol hybrid)	Car (diesel hybrid)	Car (electric)	Bus	HGV (Rigid)	HGV (Artic)	LGV	Taxi (Oxford HCV)	Taxi (Other HCV)	Taxi (PHV)	Total (µg/m³)	Total NO₂ (μg/m³)
DT55 -	- St Clements/ T	The Plain Ro	oundabout												
NOx	15.5	5.0	28.0	0.1	0.0	0.0	17.4	6.3	0.0	9.3	0.6	0.1	82.9	82.9	44.0
PM 10	14.7	2.4	1.9	0.1	0.0	0.1	1.2	0.3	0.0	0.7	0.1	0.0	0.2	21.7	
PM _{2.5}	10.2	1.2	1.1	0.1	0.0	0.1	0.7	0.2	0.0	0.4	0.0	0.0	0.1	14.0	

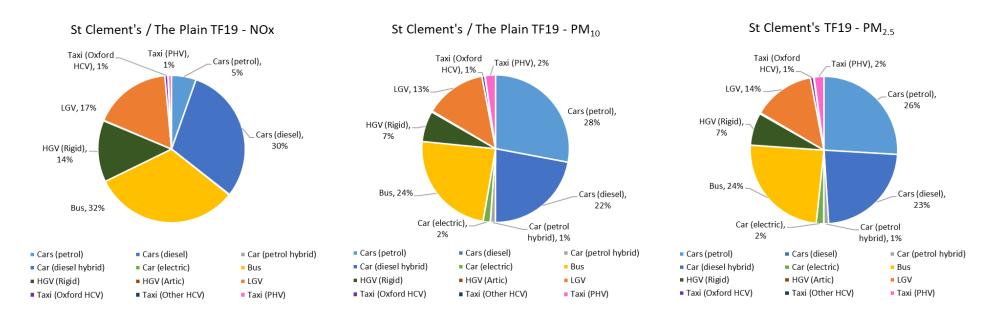
Table A-4-3 Source apportionment for all road transport on measured concentrations at St Clement's / The Plain (μ g/m³) for the baseline fleet, 2022 (NO₂ concentration measured at DT55 in 2022)


				Cars								Тахі			
	Background*	Cars (petrol)	Cars (diesel)	Car (petrol hybrid)	Car (diesel hybrid)	Car (electric)	Bus	HGV (Rigid)	HGV (Artic)	LGV	Taxi (Oxford HCV)	Taxi (Other HCV)	Taxi (PHV)	Total Measured NO₂ (μg/m³)	Total NO ₂
NO ₂	10.5	2.4	13.5	0.0	0.0	0.0	8.4	3.0	0.0	4.5	0.3	0.0	0.3	43.1	44.0

*Background NO₂ was estimated by applying the same percentage of NOx that is background in the modelled results, to the total measured NO₂.


St Clement's / The Plain DT55 - NOx

St Clement's / The Plain DT55 - PM₁₀


Figure A-4-1 Pie chart representation of source apportionment for all road transport emissions on St Clement's / The Plain – DT55 (%) for the baseline fleet, 2022

St Clement's / The Plain DT55 - PM₂₅

Figure A-4-2 Pie chart representation of source apportionment for all road transport emissions at St Clement's / The Plain – TF19 (%) for the baseline fleet, 2022

WORCESTER STREET

Table A-4-4 Source apportionment for all road transport emissions on Worcester Street (%) for the baseline fleet, 2022

			Cars								Taxi		
	Cars (petrol)	Cars (diesel)	Car (petrol hybrid)	Car (diesel hybrid)	Car (electric)	Bus	HGV (Rigid)	HGV (Artic)	LGV	Taxi (Oxford HCV)	Taxi (Other HCV)	Taxi (PHV)	Total
NOx	7.2%	41.4%	0.1%	0.1%	0.0%	3.3%	17.7%	0.1%	28.0%	0.9%	0.1%	1.0%	100%
PM ₁₀	35.3%	28.0%	1.4%	0.0%	2.0%	1.9%	7.1%	0.2%	20.3%	0.8%	0.1%	2.9%	100%
PM2.5	32.9%	29.4%	1.3%	0.0%	2.1%	2.0%	7.6%	0.2%	20.6%	0.9%	0.2%	2.7%	100%

Table A-4-5 Source apportionment for all road transport modelled concentrations on Worcester Street (µg/m³) for the baseline fleet, 2022 (NO₂ concentrations derived from the NOx to NO₂ calculator)

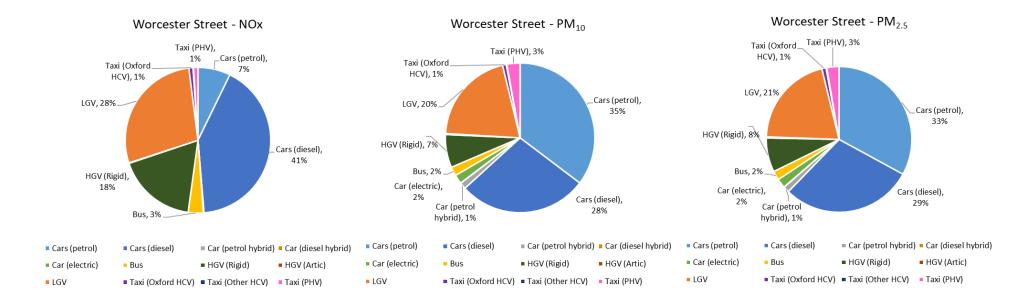

				Cars								Taxi			Total
	Background	Cars (petrol)	Cars (diesel)	Car (petrol hybrid)	Car (diesel hybrid)	Car (electric)	Bus	HGV (Rigid)	HGV (Artic)	LGV	Taxi (Oxford HCV)	Taxi (Other HCV)	Taxi (PHV)	Total (µg/m³)	NO ₂ (µg/m ³)
NOx	19.0	3.3	18.9	0.0	0.0	0.0	1.5	8.0	0.1	12.8	0.4	0.1	0.4	64.5	36.3
PM ₁₀	14.3	1.6	1.3	0.1	0.0	0.1	0.1	0.3	0.0	0.9	0.0	0.0	0.1	19.0	
PM _{2.5}	9.6	0.8	0.7	0.0	0.0	0.1	0.1	0.2	0.0	0.5	0.0	0.0	0.1	12.2	

Table A-4-6 Source apportionment for all road transport measured concentrations on Worcester Street (µg/m³) for the baseline fleet, 2022 (NO₂ concentration measured at DT45 in 2022)

				Cars								Taxi			
	Background	Cars (petrol)	Cars (diesel)	Car (petrol hybrid)	Car (diesel hybrid)	Car (electric)	Bus	HGV (Rigid)	HGV (Artic)	LGV	Taxi (Oxford HCV)	Taxi (Other HCV)	Taxi (PHV)	Total Measured NO₂ (μg/m³)	Total NO₂
NO ₂	20.5	0.7	4.3	0.0	0.0	0.0	0.3	1.8	0.0	2.9	0.1	0.0	0.1	30.8	36.3

*Background NO₂ was estimated by applying the same percentage of NOx that is background in the modelled results, to the total measured NO₂.

Figure A-4-3 Pie chart representation of source apportionment for all road transport emissions on Worcester Street (%) for the baseline fleet, 2022

BOTLEY ROAD

Table A-4-7 Source apportionment for all road transport emissions on Botley Road (%) for the baseline fleet, 2022

		Cars								Тахі			
	Cars (petrol)	Cars (diesel)	Car (petrol hybrid)	Car (diesel hybrid)	Car (electric)	Bus	HGV (Rigid)	HGV (Artic)	LGV	Taxi (Oxford HCV)	Taxi (Other HCV)	Taxi (PHV)	Total
NOx	7.7%	40.3%	0.1%	0.1%	0.0%	12.8%	12.2%	0.1%	24.8%	0.9%	0.1%	0.9%	100%
PM 10	34.2%	26.7%	1.3%	0.0%	1.9%	9.3%	6.3%	0.2%	16.4%	0.7%	0.1%	2.8%	100%
PM _{2.5}	32.1%	27.9%	1.3%	0.0%	2.0%	9.6%	6.8%	0.2%	16.5%	0.8%	0.1%	2.6%	100%

Table A-4-8 Source apportionment for all road transport on modelled concentrations on Botley Road (µg m-3) for the baseline fleet, 2022 (NO₂ concentrations derived from the NOx to NO₂ calculator)

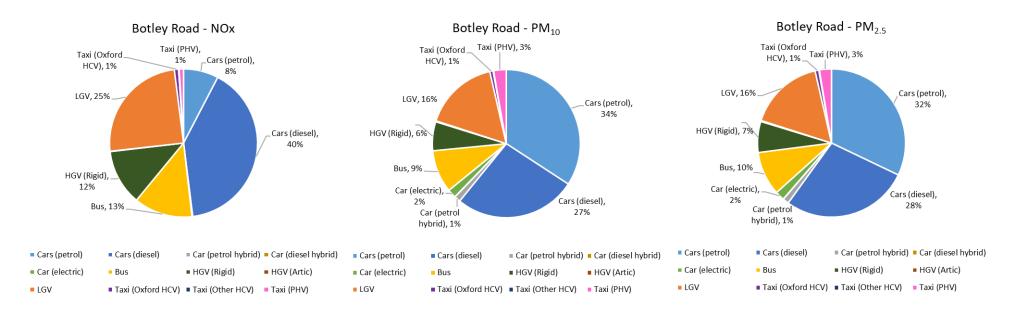
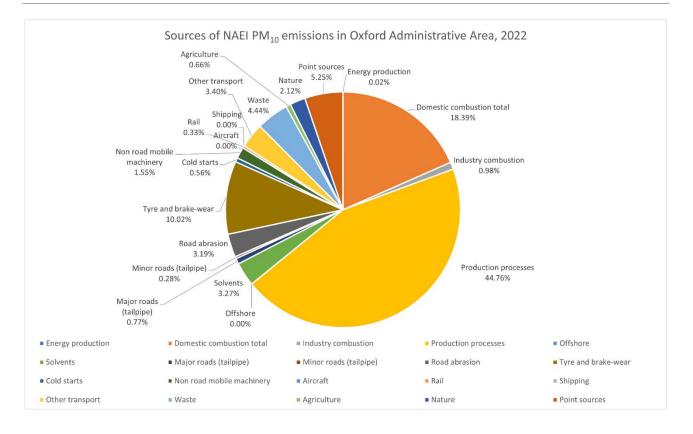

	Background	Cars									Тахі				
		Cars (petrol)	Cars (diesel)	Car (petrol hybrid)	Car (diesel hybrid)	Car (electric)	Bus	HGV (Rigid)	HGV (Artic)	LGV	Taxi (Oxford HCV)	Taxi (Other HCV)	Taxi (PHV)	Total (µg/m³)	Total NO ₂ (μg/m ³)
NOx	17.3	2.0	10.4	0.0	0.0	0.0	3.3	3.2	0.0	6.4	0.2	0.0	0.2	43.2	26.3
PM 10	14.3	1.0	0.8	0.0	0.0	0.1	0.3	0.2	0.0	0.5	0.0	0.0	0.1	17.2	
PM _{2.5}	9.6	0.5	0.4	0.0	0.0	0.0	0.2	0.1	0.0	0.3	0.0	0.0	0.0	11.2	

Table A-4-9 Source apportionment for all road transport on measured concentrations on Botley Road (µg m-3) for the baseline fleet, 2022 (NO₂ concentration measured at DT35 in 2022)

	Background	Cars										Taxi			
		Cars (petrol)	Cars (diesel)	Car (petrol hybrid)	Car (diesel hybrid)	Car (electric)	Bus	HGV (Rigid)	HGV (Artic)	LGV	Taxi (Oxford HCV)	Taxi (Other HCV)	Taxi (PHV)	Total Measured NO₂ (μg/m³)	Total NO₂
NO ₂	17.7	0.5	2.4	0.0	0.0	0.0	0.8	0.7	0.0	1.5	0.1	0.0	0.1	23.7	26.3

*Background NO₂ was estimated by applying the same percentage of NOx that is background in the modelled results, to the total measured NO₂.

Figure A-4-4 Pie chart representation of source apportionment for all road transport emissions on Botley Road (%) for the baseline fleet, 2022


APPENDIX 5 NAEI EMISISONS SOURCE APPORTIONMENT IN FULL (PM₁₀ AND PM_{2.5})

This Appendix presents NAEI emissions source apportionment for PM_{10} and $PM_{2.5}$, without breaking down the major roads (major road tailpipe, road abrasion and brake and tyre wear) component by vehicle types. These charts therefore allow consideration of the distinct major road tailpipe, road abrasion and brake and tyre wear contributions to PM_{10} and $PM_{2.5}$ emissions.

Figure A-5-1 and Figure A-5-2 show results for the whole Oxford Administrative Area, and Figure A-5-3 and Figure A-5-4 show results for Oxford Inner City.

Please note that road abrasion and brake and tyre wear emissions are not available for NO_X as NO₂.

Figure A-5-1 NAEI emissions source apportionment for PM₁₀ across Oxford Administrative Area, including distinct major road tailpipe (0.77%), road abrasion (3.19%) and brake and tyre wear (10.02%) contributions.

Figure A-5-2 NAEI emissions source apportionment for $PM_{2.5}$ across Oxford Administrative Area, including distinct major road tailpipe (1.52%), road abrasion (3.43%) and brake and tyre wear (10.11%) contributions.

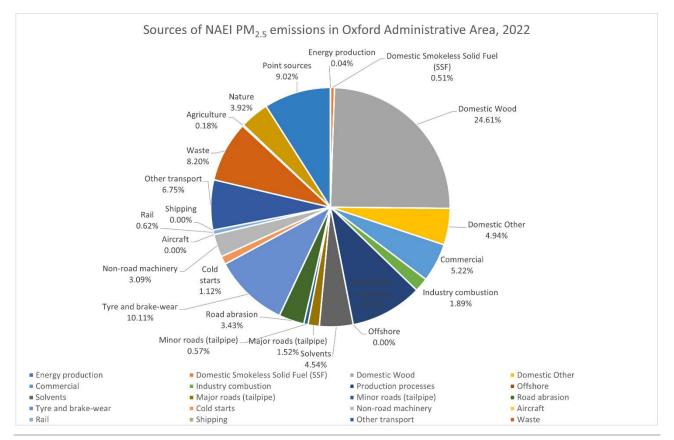
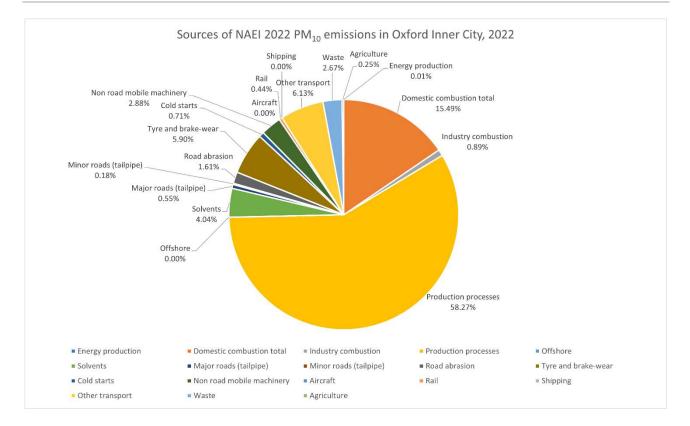
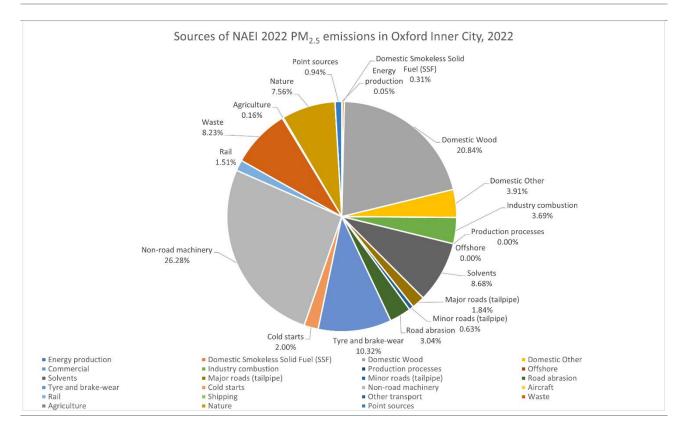




Figure A-5-3 NAEI emissions source apportionment for PM₁₀ across Oxford Inner City, including distinct major road tailpipe (0.55%), road abrasion (1.61%) and brake and tyre wear (5.90%) contributions.

Figure A-5-4 NAEI emissions source apportionment for PM_{2.5} across Oxford Inner City, including distinct major road tailpipe (1.84%), road abrasion (3.04%) and brake and tyre wear (10.32%) contributions.

T: +44 (0) 1235 75 3000 E: <u>info@ricardo.com</u> W: <u>www.ricardo.com</u>